首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   2篇
  国内免费   6篇
安全科学   4篇
废物处理   6篇
环保管理   10篇
综合类   19篇
基础理论   27篇
污染及防治   40篇
评价与监测   19篇
社会与环境   6篇
  2023年   1篇
  2022年   9篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   15篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   8篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有131条查询结果,搜索用时 46 毫秒
111.
Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R 2?=?0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R 2), root mean square error and design of index (d).  相似文献   
112.
Biomass burning is a major source of indoor air pollution in rural India. This study examined whether chronic inhalation of biomass smoke causes change in the DNA mismatch repair (MMR) pathway in the airway cells. For this, airway cells exfoliated in sputum were collected from 72 premenopausal nonsmoking rural women (median age 34 years) who cooked with biomass (wood, dung, crop residues) and 68 control women who cooked with cleaner fuel liquefied petroleum gas (LPG) for the past 5 years or more. The levels of particulate matters with diameters less than 10 and 2.5 μm (PM10 and PM2.5) in indoor air were measured by real-time aerosol monitor. Benzene exposure was monitored by measuring trans,trans-muconic acid (t,t-MA) in urine by high-performance liquid chromatography with ultraviolet detector. Generation of reactive oxygen species (ROS) and level of superoxide dismutase (SOD) in airway cells were measured by flow cytometry and spectrophotometry, respectively. Immunocytochemical assay revealed lower percentage of airway epithelial cells expressing MMR proteins mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2) in biomass-using women compared to LPG-using controls. Women who cooked with biomass had 6.7 times higher level of urinary t,t-MA, twofold increase in ROS generation, and 31 % depletion of SOD. Indoor air of biomass-using households had three times more particulate matters than that of controls. ROS, urinary t,t-MA, and particulate pollution in biomass-using kitchen had negative correlation, while SOD showed positive correlation with MSH2 and MLH1 expression. It appears that chronic exposure to biomass smoke reduces MMR response in airway epithelial cells, and oxidative stress plays an important role in the process.  相似文献   
113.
Environmental Science and Pollution Research - In the current study, the effect of different types of titanium dioxide (TiO2) nanoparticles (NPs) (rutile, anatase, and mixture) was analyzed on...  相似文献   
114.
Environmental Science and Pollution Research - The use of P25 TiO2 NPs in consumer products, their release, and environmental accumulation will have harmful effects on the coastal ecosystems. The...  相似文献   
115.
River channel migration is the universal phenomenon that is common in almost all alluvial rivers. The holy River Ganga, the heartbeat of India, is also not an exception in this case. It has shifted its course from time to time. After crossing the Rajmahal hills that is situated in the north-eastern corner of the Chota Nagpur plateau, this main river of India has started its lower course by flowing over the great low-lying flat plain of Bengal. In this flat plain area, the channel migration is a common phenomenon which is observed in the River Ganga also. The study is done in the segment of the Ganga River which is situated in the Diara surrounding area. Diara is a physical cum administrative region of the Malda district of the state of West Bengal of India which occupies an area of almost 900 km2. For the identification of channel migration zone, several methods are used like construction of historical migration zone (HMZ), erosion buffer (EB), avulsion potential zone (APZ), restricted and un-restricted migration area (RMA and UrMA) and retreating migration zone (RMZ). The impact of the channel migration over the villages of the Diara region has also been depicted in this study. Remote Sensing and Geographical Information System (RS–GIS) is used to perform this study by taking the help of historical maps, Survey of India topographical sheets, LANDSAT imageries, etc. The results show that the river has a historical migration zone of 855.55 km2 during 1926–2016 period which is near the entire area of the Diara region (i.e. 900 km2). The construction of EB over the Ganga River for the next 100 years shows that more than half of the area of the Diara region will go under the river bed.  相似文献   
116.
The presence of elevated concentration of arsenic (As) in natural hydrologic systems is regarded as the most formidable environmental crisis in the contemporary world. With its substantial presence in the drinking water of more than thirty countries worldwide, and with an affected population of more than 100 million, it has been termed as the largest mass poisoning in human history. In this special issue, we have tried to provide the most recent research advances on controls and challenges of this severe groundwater contaminant. The articles in this issue, originally presented in the 2006 Geological Society of America Annual Meeting, address the distribution of As in various geologic and geographic settings, the controls of redox and other geochemical parameters on its spatial and temporal variability, the influence of sedimentology and stratigraphy on its occurrence, and mechanisms controlling its mobility. The knowledge available from these studies should provide a roadmap for future research in arsenic contamination hydrology.  相似文献   
117.
Groundwaters have been collected from deltaic areas of West Bengal (Chakdaha and Baruipur blocks) to record their hydrogeochemical characteristics, and to verify the mechanism of arsenic (As) release. The data reveals that shallow (<70 m) groundwaters in both areas are of Ca-Mg-HCO(3) type; however deeper (>70 m) groundwaters in Baruipur areas are slightly enriched with Na, Cl and SO(4), indicating possible saline water intrusion. The groundwater is anoxic (mean Eh: -124 and -131 mV) with high levels of As (mean: 116 and 293 mug/L), Fe (mean: 4.74 and 3.83 mg/L), PO(4) (mean: 3.73 and 3.21 mg/L) and Mn (mean: 0.37 and 0.49 mg/L), respectively for Chakdaha and Baruipur areas. The observed values of As and bicarbonate (mean: 409 and 499 mg/L) in the shallow aquifer are indicative of redox processes (e.g., oxidation of organic matter) favouring the release of As. Moreover, the presence of DOC in the shallow aquifer suggests that organic matter is young and reactive, and may actively engage in redox driven processes. Our study further confirms that both Fe- and Mn-reduction processes are the dominant mechanisms for As release in these groundwaters.  相似文献   
118.
Studies on degradation of 14C-chlorpyrifos in the marine environment.   总被引:2,自引:0,他引:2  
Degradation of 14C-chlorpyrifos was studied in a marine ecosystem for 60 days and in marine sediment under moist and flooded conditions using a continuous flow system allowing a total 14C-mass balance for a period of 40 days. In the marine ecosystem, 14C-chlorpyrifos underwent rapid degradation and very little (1-2%) 14C-residues of the applied activity were detected after two months in sediments. Clams were major component of the ecosystem and played a significant role in degradation of the insecticide. In the continuous flow system chlorpyrifos did not undergo substantial mineralization. Volatilization accounted for 0.8-1% loss during first ten days of application. The amounts of extractable 14C-activity were higher in flooded sediments than in moist sediment. More bound residues were formed under moist conditions. TCP (3,5,6-trichloro-2-pyridinol) was the major degradation product formed under both moist and flooded conditions, its formation being higher in the latter conditions. These studies underline the role of clams in degradation of chlorpyrifos and lack of microbial degradation. In absence of clams, chlorpyrifos underwent abiotic degradation in marine sediment with formation of bound residues.  相似文献   
119.
This article presents the development of a multiresidue method forthe estimation of 30 insecticides, 15 organochlorineinsecticides and 6 organophosphorus insecticides, 9 syntheticpyrethriods and 2 herbicides and their quantificationin vegetables. The monitoring study indicates that though allthe vegetable samples were contaminated with pesticides, only31% of the samples contained pesticides above the prescribedtolerance limit.  相似文献   
120.
An adaptable, energy efficient chemical process is employed to synthesize Cu~(2+)engrafted MgAl_2O_4 nanoparticles(Mg_(1-x)Cu_xAl_2O_4, x = 0, 0.1, 0.3, 0.5 abbreviated as MCA0, MCA1, MCA3,and MCA5 respectively), using chelating ligand and the calcination temperature was determined by the thermogravimetric analysis of the precursor mass.They acted as good fluoride adsorbent in the presence of co-ions, different pH(2–11) via chemisorption revealed from Fourier-transform infrared spectroscopy(FTIR) and photodegraded Methylene Blue(MB).The satisfactory results were for MCA1(specific surface area 25.05 m~2/g) with 97%fluoride removal at pH 7.0 for the 10 mg/L initial fluoride concentration for 1.5 g/L adsorbent dose with 45 min contact time obeying the Langmuir isotherm model with negative thermodynamic parameters and 4 mmol of MCA3 with 98.51% photodegradation for 10~(-5) mol/L MB solution obeying pseudo-second-order and pseudo-first-order kinetics respectively.The proposed photodegradation mechanism of MB was established by the FTIR and high-performance liquid chromatography(HPLC) analysis.The nanoparticles are cubic, estimated through X-ray diffraction(XRD) and transmission electron microscopy(TEM) analysis.The band gap energies, grain size, and the effective working pH were estimated by diffuse reflectance spectra(DRS), scanning electron microscope(SEM), and zero-point potential analysis respectively.A soil candle with MCA1 also fabricated for the household purpose and tested with some fluorinated field samples.The MCA3 was able to enhance the latent fingerprint on smooth surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号