首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   2篇
基础理论   4篇
污染及防治   5篇
评价与监测   2篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  1992年   1篇
  1982年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
Fishes were collected at 16 sites within the three major river drainages (Delaware, Susquehanna, and Ohio) of Pennsylvania. Three species were evaluated for biomarkers of estrogenic/antiandrogenic exposure, including plasma vitellogenin and testicular oocytes in male fishes. Smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, and redhorse sucker Moxostoma species were collected in the summer, a period of low flow and low reproductive activity. Smallmouth bass were the only species in which testicular oocytes were observed; however, measurable concentrations of plasma vitellogenin were found in male bass and white sucker. The percentage of male bass with testicular oocytes ranged from 10 to 100 %, with the highest prevalence and severity in bass collected in the Susquehanna drainage. The percentage of males with plasma vitellogenin ranged from 0 to 100 % in both bass and sucker. Biological findings were compared with chemical analyses of discrete water samples collected at the time of fish collections. Estrone concentrations correlated with testicular oocytes prevalence and severity and with the percentage of male bass with vitellogenin. No correlations were noted with the percentage of male sucker with vitellogenin and water chemical concentrations. The prevalence and severity of testicular oocytes in bass also correlated with the percent of agricultural land use in the watershed above a site. Two sites within the Susquehanna drainage and one in the Delaware were immediately downstream of wastewater treatment plants to compare results with upstream fish. The percentage of male bass with testicular oocytes was not consistently higher downstream; however, severity did tend to increase downstream.  相似文献   
12.
Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.  相似文献   
13.
AJ Dobbs  LJ Tavener 《Chemosphere》1982,11(4):465-470
The activity of a chemical in solution determines its tendency to move into other media. At low concentrations (<0.01M) it is generally considered to be linearly related to concentration. A hypothetical model based on the structure of liquid water is discussed which could cause deviations from this linearity in the ppb region, a concentration much lower than that normally investigated thermodynamically, but one of great importance environmentally. Headspace experiments are reported with carbon tetrachloride and chloroform in water at concentrations down to ~10?3 ppb but no such deviations were discerned.  相似文献   
14.
在分析500kV变电站主变压器消防系统的现状,比较3类消防系统优缺点的基础上,详细论述了主变排油注氮装置的结构组成、工作原理、参数计算、控制系统设计以及需要注意的事项等,为下一步排油注氮装置的推广应用打下基础.  相似文献   
15.
Sperry LJ  Belnap J  Evans RD 《Ecology》2006,87(3):603-615
The nonnative annual grass Bromus tectorum has successfully replaced native vegetation in many arid and semiarid ecosystems. Initial introductions accompanied grazing and agriculture, making it difficult to separate the effects of invasion from physical disturbance. This study examined N dynamics in two recently invaded, undisturbed vegetation associations (C3 and C4). The response of these communities was compared to an invaded/ disturbed grassland. The invaded/disturbed communities had higher surface NH4+ input in spring, whereas there were no differences for surface input of NO3-. Soil inorganic N was dominated by NH4+, but invaded sites had greater subsurface soil NO3-. Invaded sites had greater total soil N at the surface four years post-invasion in undisturbed communities, but total N was lower in the invaded/disturbed communities. Soil delta15N increased with depth in the noninvaded and recently invaded communities, whereas the invaded/disturbed communities exhibited the opposite pattern. Enriched foliar delta15N values suggest that Bromus assimilated subsurface NO3-, whereas the native grasses were restricted to surface N. A Rayleigh distillation model accurately described decomposition patterns in the noninvaded communities where soil N loss is accompanied by increasing soil delta15N; however, the invaded/ disturbed communities exhibited the opposite pattern, suggesting redistribution of N within the soil profile. This study suggests that invasion has altered the mechanisms driving nitrogen dynamics. Bromus litter decomposition and soil NO3- concentrations were greater in the invaded communities during periods of ample precipitation, and NO3- leached from the surface litter, where it was assimilated by Bromus. The primary source of N input in these communities is a biological soil crust that is removed with disturbance, and the lack of N input by the biological soil crust did not balance N loss, resulting in reduced total N in the invaded/disturbed communities. Bromus produced a positive feedback loop by leaching NO3- from decomposing Bromus litter to subsurface soil layers, accessing that deepsoil N pool with deep roots and returning that N to the surface as biomass and subsequent litter. Lack of new inputs combined with continued loss will result in lower total soil N, evidenced by the lower total soil N in the invaded/disturbed communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号