首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1263篇
  免费   27篇
  国内免费   9篇
安全科学   51篇
废物处理   47篇
环保管理   323篇
综合类   133篇
基础理论   383篇
污染及防治   193篇
评价与监测   107篇
社会与环境   47篇
灾害及防治   15篇
  2023年   6篇
  2022年   12篇
  2021年   22篇
  2020年   14篇
  2019年   16篇
  2018年   25篇
  2017年   27篇
  2016年   43篇
  2015年   31篇
  2014年   29篇
  2013年   76篇
  2012年   73篇
  2011年   73篇
  2010年   54篇
  2009年   45篇
  2008年   58篇
  2007年   68篇
  2006年   75篇
  2005年   52篇
  2004年   50篇
  2003年   55篇
  2002年   38篇
  2001年   19篇
  2000年   27篇
  1999年   19篇
  1998年   23篇
  1997年   24篇
  1996年   22篇
  1995年   18篇
  1994年   12篇
  1993年   15篇
  1992年   16篇
  1991年   8篇
  1990年   13篇
  1989年   9篇
  1988年   11篇
  1987年   9篇
  1986年   11篇
  1985年   7篇
  1984年   13篇
  1983年   10篇
  1982年   11篇
  1981年   16篇
  1980年   6篇
  1979年   12篇
  1978年   7篇
  1977年   6篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
排序方式: 共有1299条查询结果,搜索用时 15 毫秒
921.
Defining stream reference conditions is integral to providing benchmarks to ecological perturbation. We quantified channel geometry, hydrologic and environmental variables, and macroinvertebrates in 62 low‐gradient, SE United States (U.S.) Sand Hills (Level IV ecoregion) sand‐bed streams. To identify hydrogeomorphic reference condition (HGM), we clustered channel geometry deviation from expectations given watershed area (Aws), resulting in two HGM groups discriminated by area at the top of bank (Atob) residuals <0.6 m2 and >0.6 m2 predicted to be HGM reference/nonreference streams, respectively. Two independent partial least squares discriminate analyses used (1) hydrologic/environmental variables and (2) macroinvertebrate mean trait values (mT) on 10 reference/nonreference stream pairs of similar Aws for classification validation. Nonreference streams had flashier hydrographs and altered flow magnitudes, lower organic matter, coarser substrate, higher pH/specific conductivity compared with reference streams. Macroinvertebrate assemblages corresponded to HGM groupings, with mT indicative of multivoltinism, collector‐gatherer functional feeding groups, fast current‐preference taxa, and lower Ephemeroptera, Plecoptera, and Trichoptera richness and biotic integrity in nonreference streams. HGM classifications in Sand Hills, sand‐bed streams were determined from channel geometry. This easily implemented classification is indicative of contemporary hydrologic disturbance resulting in contrasting macroinvertebrate assemblages.  相似文献   
922.
923.
Shrinking freshwater supplies pose particular threats in international drainage basins, which serve some 40% of the global population and account for around 60% of the world's river flows. The use and management of these basins are increasingly governed by treaties between the riparian states. While the rules of international law, properly understood, are sufficiently flexible to permit adaptation to changing conditions such as development, population growth and climate change, treaties are essentially rigid instruments that are modifiable only under certain limited conditions. Countries should take this fact into account in designing the regimes to govern their shared freshwater resources, including joint management institutions.  相似文献   
924.
ABSTRACT: Municipalities will be implementing structural best management practices at increasing rates in their effort to comply with Phase II of the National Pollutant Discharge Elimination System (NPDES). However, there is evidence that structural best management practices (BMPs) by themselves may be insufficient to attain desired water quality standards. This paper reports on an analysis of the median removal efficiencies of structural BMPs and compares them to removal efficiencies estimated as being necessary to attain water quality standards in the Rouge River in Detroit, Michigan. Eight water quality parameters are reviewed using data collected from 1994 to 1999 in the Rouge River. Currently, five of the eight parameters in the Rouge River including bacteria, biochemical oxygen demand, and total suspended solids (TSS) exceed the required water quality standards. The reported analysis of structural BMP efficiencies reveals that structural BMPs appear capable of reducing only some of the pollutants of concern to acceptable levels.  相似文献   
925.
On the otherwise low-biomass seafloor of the Gulf of Mexico (GoM) continental slope, natural oil and gas seeps are oases of local primary production that support lush animal communities. Hundreds of seep communities have been documented on the continental slope, and nutrition derived from seeps could be an important link in the overall GoM food web. Here, we present a uniquely large and cohesive data set of δ(13)C, δ(15)N, and δ(34)S compositions of the vestimentiferan tubeworms Escarpia laminata and Lamellibrachia sp. 1, which dominate biomass at GoM seeps and provide habitat for hundreds of other species. Our sampling design encompassed an entire region of the GoM lower slope, allowing us for the first time to assess spatial variability in isotope compositions and to robustly address long-standing hypotheses about how vestimentiferans acquire and cycle nutrients over their long lifespan (200+?years). Tissue δ(13)C values provided strong evidence that larger adult vestimentiferans use their buried roots to take up dissolved inorganic carbon from sediment pore water, while very small individuals use their plume to take up carbon dioxide from the seawater. δ(34)S values were extremely variable among individuals of the same species within one location (<1?m(2) area), indicating high variability in the inorganic sulfur pools on a very small spatial scale. This finding supports the hypothesis that vestimentiferans use their roots to cycle sulfate and sulfide between their symbionts and free-living consortia of sulfate-reducing archaea in the sediment. Finally, consistent differences in δ(15)N between two cooccurring vestimentiferan species provided the first strong evidence for partitioning of inorganic resources, which has significant implications for the ecology and evolution of this taxonomic group.  相似文献   
926.
Ecosystem components interact in complex ways and change over time due to a variety of both internal and external influences (climate change, season cycles, human impacts). Such processes need to be modeled dynamically using appropriate statistical methods for assessing change in network structure. Here we use visualizations and statistical models of network dynamics to understand seasonal changes in the trophic network model described by Baird and Ulanowicz [Baird, D., Ulanowicz, R.E., 1989. Seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 501 (59), 329–364] for the Chesapeake Bay (USA). Visualizations of carbon flow networks were created for each season by using a network graphic analysis tool (NETDRAW). The structural relations of the pelagic and benthic compartments (nodes) in each seasonal network were displayed in a two-dimensional space using spring-embedder analyses with nodes color-coded for habitat associations (benthic or pelagic). The most complex network was summer, when pelagic species such as sea nettles, larval fishes, and carnivorous fishes immigrate into Chesapeake Bay and consume prey largely from the plankton and to some extent the benthos. Winter was the simplest of the seasonal networks, and exhibited the highest ascendency, with fewest nodes present and with most of the flows shifting to the benthic bacteria and sediment POC compartments. This shift in system complexity corresponds with a shift from a pelagic- to benthic-dominated system over the seasonal cycle, suggesting that winter is a mostly closed system, relying on internal cycling rather than external input. Network visualization tools are useful in assessing temporal and spatial changes in food web networks, which can be explored for patterns that can be tested using statistical approaches. A simulation-based continuous-time Markov Chain model called SIENA was used to determine the dynamic structural changes in the trophic network across phases of the annual cycle in a statistical as opposed to a visual assessment. There was a significant decrease in outdegree (prey nodes with reduced link density) and an increase in the number of transitive triples (a triad in which i chooses j and h, and j also chooses h, mostly connected via the non-living detritus nodes in position i), suggesting the Chesapeake Bay is a simpler, but structurally more efficient, ecosystem in the winter than in the summer. As in the visual analysis, this shift in system complexity corresponds with a shift from a pelagic to a more benthic-dominated system from summer to winter. Both the SIENA model and the visualization in NETDRAW support the conclusions of Baird and Ulanowicz [Baird, D., Ulanowicz, R.E., 1989. Seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 501 (59), 329–364] that there was an increase in the Chesapeake Bay ecosystem's ascendancy in the winter. We explain such reduced complexity in winter as a system response to lowered temperature and decreased solar energy input, which causes a decline in the production of new carbon, forcing nodes to go extinct; this causes a change in the structure of the system, making it simpler and more efficient than in summer. It appears that the seasonal dynamics of the trophic structure of Chesapeake Bay can be modeled effectively using the SIENA statistical model for network change.  相似文献   
927.
The common-property problem results in excessive mining, hunting, and extraction of oil and water. The same phenomenon is also responsible for excessive investment in R&D and excessive outlays in rent-seeking contests. We propose a “Partnership Solution” to eliminate or at least mitigate these excesses. Each of N players joins a partnership in the first stage and chooses his effort in the second stage. Under the rules of a partnership, each member must pay his own cost of effort but receives an equal share of the partnership's revenue. The incentive to free-ride created by such partnerships turns out to be beneficial since it naturally offsets the excessive effort inherent in such problems. In our two-stage game, this institutional arrangement can, under specified circumstances, induce the social optimum in a subgame-perfect equilibrium: no one has a unilateral incentive (1) to switch to another partnership (or create a new partnership) in the first stage or (2) to deviate from socially optimal actions in the second stage. The game may have other subgame-perfect equilibria, but the one associated with the “Partnership Solution” is strictly preferred by every player. We also propose a modification of the first stage which generates a unique subgame-perfect equilibrium. Antitrust authorities should recognize that partnerships can have a less benign use. By organizing as competing partnerships, an industry can reduce the “excessive” output of Cournot oligopoly to the monopoly level. Since no partner has any incentive to overproduce in the current period, there is no need to deter cheating with threats of future punishments.  相似文献   
928.
Ewers RM  Thorpe S  Didham RK 《Ecology》2007,88(1):96-106
Both area and edge effects have a strong influence on ecological processes in fragmented landscapes, but there is little understanding of how these two factors might interact to exacerbate local species declines. To test for synergistic interactions between area and edge effects, we sampled a diverse beetle community in a heavily fragmented landscape in New Zealand. More than 35,000 beetles of approximately 900 species were sampled over large gradients in habitat area (10(-2) 10(6) ha) and distance from patch edge (2(0)-2(10) m from the forest edge into both the forest and adjacent matrix). Using a new approach to partition variance following an ordination analysis, we found that a synergistic interaction between habitat area and distance to edge was a more important determinant of patterns in beetle community composition than direct edge or area effects alone. The strength of edge effects in beetle-species composition increased nonlinearly with increasing fragment area. One important consequence of the synergy is that the slopes of species area (SA) curves constructed from habitat islands depend sensitively on the distance from edge at which sampling is conducted. Surprisingly, we found negative SA curves for communities sampled at intermediate distances from habitat edges, caused by differential edge responses of matrix- vs. forest-specialist species in fragments of increasing area. Our data indicate that distance to habitat edge has a consistently greater impact on beetle community composition than habitat area and that variation in the strength of edge effects may underlie many patterns that are superficially related to habitat area.  相似文献   
929.
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.  相似文献   
930.
The link between biodiversity and ecosystem functioning is now well established, but the challenge remains to develop a mechanistic understanding of observed effects. Predator-prey interactions provide an opportunity to examine the role of resource partitioning, thought to be a principal mediator of biodiversity-function relationships. To date, interactions between multiple predators and their prey have typically been investigated in simplified agricultural systems with limited scope for resource partitioning. Thus there remains a dearth of studies examining the functional consequences of predator richness in diverse food webs. Here, we manipulated a species-rich intertidal food web, crossing predator diversity with total predator density, to simultaneously examine the independent and interactive effects of diversity and density on the efficiency of secondary resource capture. The effect of predator diversity was only detectable at high predator densities where competitive interactions between individual predators were magnified; the rate of resource capture within the species mixture more than doubled that of the best-performing single species. Direct observation of species-specific resource use in monoculture, as quantified by patterns of prey consumption, provided clear evidence that species occupied distinct functional niches, suggesting a mechanistic explanation of the observed diversity effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号