首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14803篇
  免费   535篇
  国内免费   5772篇
安全科学   917篇
废物处理   943篇
环保管理   1171篇
综合类   8144篇
基础理论   2611篇
环境理论   2篇
污染及防治   5661篇
评价与监测   548篇
社会与环境   497篇
灾害及防治   616篇
  2024年   3篇
  2023年   224篇
  2022年   683篇
  2021年   547篇
  2020年   410篇
  2019年   429篇
  2018年   535篇
  2017年   656篇
  2016年   811篇
  2015年   1010篇
  2014年   1161篇
  2013年   1616篇
  2012年   1263篇
  2011年   1345篇
  2010年   963篇
  2009年   952篇
  2008年   1012篇
  2007年   923篇
  2006年   827篇
  2005年   603篇
  2004年   420篇
  2003年   550篇
  2002年   483篇
  2001年   409篇
  2000年   433篇
  1999年   473篇
  1998年   422篇
  1997年   351篇
  1996年   333篇
  1995年   285篇
  1994年   235篇
  1993年   191篇
  1992年   152篇
  1991年   88篇
  1990年   69篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
使用浸渍法制备的CuO Al2 O3催化剂对吸附苯酚饱和的活性炭进行非均相催化湿式氧化再生研究 ,考察了反应温度、反应时间、催化剂投加量、反应氧分压、投炭量、蒸馏水量对非均相催化湿式氧化再生活性炭的影响结果 ,同时在该实验中得到非均相CuO Al2 O3催化湿式氧化再生活性炭的最佳条件。对催化剂进行了X衍射分析 ,并通过对催化剂的稳定性进行实验 ,得出该催化剂在进行催化湿式氧化再生活性炭的过程中具有较好的稳定性  相似文献   
262.
农业蔬菜废物处理方法研究进展和探讨   总被引:6,自引:0,他引:6  
目前我国农业蔬菜废物污染问题正日益加重 ,蔬菜废物和其他固体废物相比具有高含水率、高营养成分和基本无毒害的特性 ,适宜于单独收集处理。本文介绍了国内外蔬菜废物处理方法的研究进展 ,包括好氧堆肥法、厌氧消化法、好氧 -厌氧联合处理法 ,并对这些方法的适用条件进行了论述。同时 ,探讨了接种微生物自然堆沤法的初步研究结果  相似文献   
263.
碱洗是硅钢生产的重要环节。碱洗液随使用时间的延长 ,其中会累积大量杂质 ,造成碱液清洗效率下降而失效。本文使用磁选与浮选联合法去除碱液中的杂质 ,达到了提高碱洗效率并实现碱液的循环再用  相似文献   
264.
Chang CY  Hsieh YH  Lin YM  Hu PY  Liu CC  Wang KH 《Chemosphere》2001,44(5):1153-1158
The object of this research was to study the formation of disinfection by-products by using chlorine dioxide (ClO2) as a disinfectant reacting with different properties of organic substance in natural aquatic environment. The adsorbent resin (XAD-4, XAD-7) was used to divide the organic matters in raw water into three groups. The influence of the function groups on structure, reaction tendency, and formation of disinfection by-products generated by the reaction of these organic substances with chlorine dioxide was explored. The experimental results show that the three different organic groups formed using adsorbent resin were hydrophobic substance, hydrophilic acid, and non-acid hydrophilics in proportions of 43%, 41%, and 16%, respectively. Within the raw water in our study, the hydrophilic substance had a higher distribution proportion than that described in general articles and journals, which indicates that this water was contaminated with pollution from human beings. The exploration of the reactivity of the three different organic substances with chlorine dioxide shows that the unit consumption of disinfection agent per unit organic matters (represented by ClO2/DOC) is in the following sequence hydrophobic substance > hydrophilic substance > non-acid hydrophilics. It indicated that larger molecular organic precursors had larger consumption of disinfectant. We also discovered that after the reaction of the three different organic substances with chlorine dioxide, the largest amount of disinfection by-products were generated by the non-acid hydrophilics.  相似文献   
265.
Environmental Science and Pollution Research - Composite adsorbents usually outperform single component adsorbents as they could combine the properties and advantages of each component. In this...  相似文献   
266.
Wu Z  Zhou M  Wang D 《Chemosphere》2002,48(10):1089-1096
A novel electrocatalysis method for phenol degradation was described using a β-PbO2 anode modified with fluorine resin and a Ni–Cr–Ti alloy cathode. In case of air sparging at the cathodic zone, the techniques of anodic–cathodic electrocatalysis (ACEC) and ferrous ion catalyzed anodic–cathodic electrocatalysis (FACEC) in the presence of iron(II) were developed. Both of ACEC and FACEC were more effective than anodic electrocatalysis (AEC). The percentage of phenol eliminated by FACEC could increase by nearly 30% compared with that of AEC, and the current efficiency could reach to 70%. Important operating factors such as ferrous ion concentration, air-sparging rate and applied current were investigated and it was found that such beneficial effects could be achieved at a suitable current and ratio of the concentration of ferrous ion to the air sparged. The mechanism of phenol degradation is proposed to be the generation of hydroxyl radicals concerned with the two electrodes. Results also indicated that the process provided an efficient way to regenerate ferrous ion compared with the conventional Fenton's system.  相似文献   
267.
Wang X  Sun C  Wang Y  Wang L 《Chemosphere》2002,46(2):153-161
The comparative toxicities of selected phenols to higher plants Cucumis sativus were measured and the negative logarithm molar concentration of the root elongation median inhibition (IRC50) were derived. Quantitative structure-activity relationships (QSARs) were developed to explore the toxicity influencing factors and for predictive purpose. The toxicity data, fell into two classes: polar narcosis and bio-reactive. For polar narcotic phenols, a highly significant two-parameter QSAR based on 1-octanol/water partition coefficient (logKow) and energy of the lowest unoccupied orbital (E(lumo)) was derived (IRC50 = 0.77 log Kow - 0.39E(lumo) + 2.36 n = 22 r2 = 0.89). The five bio-reactive chemicals proved to show elevated toxicity due to their typical substructure involved diverse reactive mechanisms. In an effort to model all chemicals, a robust multiple-variable QSAR combining logKow, E(lumo) and Qmax, the most negative net atomic charge, was developed (IRC50 = 0.65 logKow - 0.72E(lumo) + 0.23Qmax + 2.81 n = 27 r2 = 0.94), indicating that hydrophobicity, electrophilicity and hydrogen bond interaction contribute mainly to the phytotoxicity. The toxicological data was compared with Tetrahymena pyriformis 2-d population growth inhibition toxicity (IGC50) and excellent interspecies correlations were observed both for the polar narcotics and for five reactive chemicals (for polar narcotics: IRC50 = 0.95IGC50 + 1.07 n = 16 r2 = 0.89; for bio-reactive chemicals: IRC50 = 0.98IGC50 + 2.19 n = 5 r2 = 0.97; and for all: IRC50 = 0.93IGC50 + 1.63 n = 21 r2 = 0.87). This suggested that T pyriformis toxicity could serve as a surrogate of C. sativus toxicity for phenols and interspecies correlation also could be established for reactive chemicals.  相似文献   
268.
Wang Z  Shan XQ  Zhang S 《Chemosphere》2002,46(8):1163-1171
Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.  相似文献   
269.
Wang X  Yin C  Wang L 《Chemosphere》2002,46(7):1045-1051
Inhibition of growth of the yeast Saccharomyces cerevisiae (Cmiz, the minimum concentration that produced a clear inhibition zone within 12 h) for 24 nitroaromatic compounds was investigated and a quantitative structure-activity relationship (QSAR) developed based on hydrophobicity expressed as the l-octanol/water partition coefficient in logarithm form, log K(ow), electrophilicity based on the energy of the lowest unoccupied orbital (E(lumo)). All nitrobenzene derivatives exhibited enhanced reactive toxicity than baseline. The toxicities of mono-nitrobenzenes and di-nitrobenzenes were elicited by different mechanisms of toxic action. For mono-nitro-derivatives, both significant log K(ow) based and strong E(lumo)-dependent relationships were observed indicating that their toxicities were affected both by the penetration process and the interaction with target sites of interaction. The toxicities of di-nitrobenzenes were greater than mono-nitrobenzenes and no log K(ow)-dependent but highly significant E(lumo)-based relationship was obtained. This suggests that toxicity of di-nitrobenzenes was highly electrophilic and involved mainly their in vivo electrophilic interaction with biomacromolecules. In an effort to model the elevated toxicity of all nitrobenzenes, a response-surface analysis was performed and this resulted in a highly predictive two-variable QSAR without reference to their exact mechanisms (Cmiz = 0.41 log K(ow) - 0.89 E(lumo) - 0.46, r2 = 0.87, Q2 = 0.86, n = 24).  相似文献   
270.
Airborne carbonyls were characterized from emitted indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Eleven of 19 types of samples (58%) demonstrated formaldehyde concentrations higher than the World Health Organization exposure limit (a 30-min average of 100 μg m?3). Different positive significant correlations between glyoxal/methylglyoxal and formaldehyde/acetaldehyde concentrations were observed, suggesting possible different characteristics in emissions between two pairs of carbonyl compounds. A sample in the highest inhalation risk shows 29.2 times higher risk than the lowest sample, suggesting different coal sampling locations could contribute to the variation of inhalation risk. Inhabitants in Xuanwei also tend to spend more time cooking and more days per year indoors than the national average. The calculated cancer risk ranged from 2.2–63 × 10?5, which shows 13 types of samples at high-risk level. Cumulative effect in combination with different carbonyls could have contributed to the additive actual inhalation cancer risk. There is a need to explicitly address the health effects of environmentally relevant doses, considering life-long exposure in indoor dwellings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号