首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
废物处理   2篇
环保管理   16篇
综合类   8篇
基础理论   15篇
污染及防治   26篇
评价与监测   10篇
社会与环境   9篇
  2023年   6篇
  2022年   5篇
  2021年   7篇
  2020年   1篇
  2019年   10篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   8篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2003年   2篇
  2002年   4篇
  1997年   1篇
  1996年   1篇
  1962年   1篇
  1961年   1篇
  1955年   2篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
31.
The pollution of aquifer sediments by heavy metals has assumed serious concern due to their toxicity and accumulative behavior. Changes in environmental conditions can strongly influence the behavior of both essential and toxic elements by altering the forms in which they occur and therefore quantification of the different forms of metal is more meaningful than total metal concentrations. In this study, fractionation of metal ions in aquifer sediments of Semria Ojhapatti area, Bhojpur district, Bihar has been studied to determine the ecotoxic potential of metal ions. The investigations suggest that iron, copper, and arsenic have a tendency to remain associated in the following order residual > reducible > acid-soluble > oxidizable; manganese and zinc have tendency to be associated as residual > acid-soluble > reducible > oxidizable. The risk assessment code reveals that manganese and zinc occur in significant concentration in acid-soluble fraction and therefore comes under the high risk category and can easily enter the food chain. Most of the iron, copper, and arsenic occur as immobile fraction (i.e. residual) followed by its presence in reducible fraction and would pose threat to the water quality due to changing redox conditions. The metal enrichment factor in the study area shows moderate to significant metal enrichment in the aquifer sediments which may pose a real threat in near future. The geo-accumulation index of metals also shows that the metals lie in the range of strongly contaminated (for iron at shallow depths) to moderately contaminated to uncontaminated values.  相似文献   
32.
There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g?1 soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20?>?Zn 10?>?Cu 20?>?Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α?=?0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p?<?0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.  相似文献   
33.
This paper derives the optimal level of restorative efforts required to restore environments degraded by invasive species invasion. Specific attention is focused on a case when restoration faces the risk of failure through relapse of the restored environment caused by repeat invasions. The level of restored environment may also play a role in its future improvement or susceptibility to failure. The tradeoff between the optimal level of environmental quality and number of restorative efforts required to attain that given environmental quality is highlighted.  相似文献   
34.
This paper explores the role of risk perceptions in influencing public policy related to global warming. It solves for the optimal paths for emissions, abatement and investment in pollution-eliminating research by incorporating perceived risks into public decision making. It also compares the impact of differential risk perceptions on international collaboration on carbon abatement. Key findings are that the perception of risks related to environmental damages and technological breakthroughs plays an important role in determining the level of mitigation efforts. A high level of perceived risk of environmental damages discourages investment in pollution-eliminating research as there are few benefits from eliminating pollution after damages are realized. Other options that allow for sequestering carbon from the atmosphere may still remain viable. Another key finding is that when it comes to effort sharing between nations, differential mitigation efforts are primarily caused due to the differences in abatement technology, benefits from emissions and research capabilities. However, such differences could be accentuated or mitigated depending upon the differences in risk perception of developed and developing countries.  相似文献   
35.
Environmental Science and Pollution Research - Chlorophenols are not only noticed in an effluvium of industries but also can emerge from the water treatment plants for domestic supply which poses a...  相似文献   
36.
Due to their small size and unique physico-chemical characteristics, nanomaterials have gained importance in the agri-food sector, notably in preservation and packaging. Future applications will focus on shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food, irrigating water and drinking water. Different types and shapes of nanomaterials are being used depending upon the needs and nature of the work in agriculture and water quality management. Here we review the application of nanotechnology in agriculture. The major points discussed are: (1) Nanomaterials for agriculture and water quality management. (2) Research interests such as nanoscale carriers, fabricated xylem vessels, nanolignocellulosic materials, clay nanotubes, photocatalysis, bioremediation of resistant pesticides, disinfectants, agricultural wastewater treatment, nanobarcode technology, quantum dots for staining bacteria and nanobiosensors. (3) Nanotechnological applications for agriculture, which includes nanolignodynamic metallic particles, photocatalysis, desalination, removal of heavy metals and wireless nanosensors.  相似文献   
37.
Flooding and inundation are annual events that occur during the rainy season in Cambodia, and inundation has a strong relationship with human health. This study simulated the coliform bacteria distribution using a hydraulic model and estimated the impact of inundation on public health using a dose–response model. The model parameters were calibrated using field survey data from Cambodia and obtained good agreement with the coliform group count distribution. The results suggest that the impact of inundation on human health is most noticeable in residential areas. The annual average risk of infection during medium-sized flood events is 0.21. The risk due to groundwater use ranges from 0.12 to 0.17 in inundation areas and reaches as high as 0.23 outside the inundation areas. The risk attributed to groundwater use is therefore higher than that for surface water use (0.02–0.06), except in densely populated areas at the city center. There is a high risk for infection with waterborne disease in residential areas, and the annual average risk during small flood events is 0.94. An assessment of possible countermeasures to reduce the risk shows that the control of inundation may bring more risk to public health in Cambodia. Shallower inundation water (<0.3 m) leads to a higher risk of infection, but if the depth is greater than 2 m, the risk is low in residential areas. The simulated results explain the spatial distributions of infection risk,, which are vitally important for determining the highest priority places with relatively high risk and will be helpful for decision makers when considering the implementation of countermeasures.  相似文献   
38.
Environmental Science and Pollution Research - Warming of the earth is considered as the major adverse effect of climate change along with other abnormalities such as non-availability of water...  相似文献   
39.
ABSTRACT: The cascade correlation neural network was used to predict the two-year peak discharge (Q2) for major regional river basins of the continental United States (US). Watersheds ranged in size by four orders of magnitude. Results of the neural network predictions ranged from correlations of 0.73 for 104 test data in the Souris-Red Rainy river basin to 0.95 for 141 test data in California. These results are improvements over previous multilinear regressions involving more variables that showed correlations ranging from 0.26 to 0.94. Results are presented for neural networks trained and tested on drainage area, average annual precipitation, and mean basin elevation. A neural network trained on regional scale data in the Texas Gulf was comparable to previous estimates of Q2 by regression. Our research shows Q2 was difficult to predict for the Souris-Red Rainy, Missouri, and Rio Grande river basins compared to the rest of the US, and acceptable predictions could be made using only mean basin elevation and drainage areas of watersheds.  相似文献   
40.
The threat of release of methane sequestered in the circumpolar Arctic regions of the world creates the possibility of triggering additional feedback effects from the terrestrial and the deep ocean systems which could potentially add large amounts of carbon (C) into the atmosphere. This paper analyses the implications for C mitigation policy under the threats of a substantial permafrost methane release. Several insights emerge from the analysis. First, the presence of non-linear feedbacks creates a bifurcation zone in the C emissions-stock space, on one side of which large accumulations of atmospheric C materialize leading to significant damages. Second, the bifurcation line does not have a steep slope, implying that it would be possible to avoid falling on the wrong side of this zone even if the current atmospheric stock of C were higher than what they are today. Third, when the release of permafrost C is uncertain, there is benefit in reducing anthropogenic C more than what would be optimal under a certain release of the same. Fourth, higher abatement cost scenarios do not necessarily imply significantly reduced abatement efforts. On the contrary, abatement efforts, which are only reduced marginally under this scenario, ensure that long run carbon path is stabilized. This is done in order to avoid incurring substantial costs of abatement in the future when non-linear feedback effects kick in.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号