全文获取类型
收费全文 | 9629篇 |
免费 | 0篇 |
国内免费 | 1篇 |
专业分类
废物处理 | 765篇 |
环保管理 | 1207篇 |
综合类 | 936篇 |
基础理论 | 3104篇 |
污染及防治 | 1720篇 |
评价与监测 | 1004篇 |
社会与环境 | 894篇 |
出版年
2023年 | 1篇 |
2019年 | 2篇 |
2018年 | 1473篇 |
2017年 | 1371篇 |
2016年 | 1193篇 |
2015年 | 126篇 |
2014年 | 13篇 |
2013年 | 5篇 |
2012年 | 458篇 |
2011年 | 1337篇 |
2010年 | 688篇 |
2009年 | 596篇 |
2008年 | 876篇 |
2007年 | 1225篇 |
2006年 | 1篇 |
2005年 | 18篇 |
2004年 | 32篇 |
2003年 | 61篇 |
2002年 | 97篇 |
2001年 | 14篇 |
2000年 | 10篇 |
1999年 | 2篇 |
1998年 | 9篇 |
1996年 | 1篇 |
1984年 | 11篇 |
1983年 | 8篇 |
1935年 | 2篇 |
排序方式: 共有9630条查询结果,搜索用时 31 毫秒
341.
Heavy metals and soil microbes 总被引:1,自引:0,他引:1
Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g?1 Cd and As; 1000 mg g?1 Co, Cu, Cr, Ni and 10,000 mg g?1 Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED50) and lethal concentration (LC50) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems. 相似文献
342.
Misbah Sultan 《Environmental Chemistry Letters》2017,15(2):347-366
Synthetic organic dyes are extensively used in consumer products from textile to pharmaceuticals. A large amount of organic dyes is ultimately discharged as effluent into water bodies, thus posing a serious threat to environment and life. Therefore, removal of dyes from water bodies is needed. To address this problem, various synthetic and natural materials have been used to adsorb dyes. Here, we review the application of polyurethane for removal of organic dyes. First, we review the application of simple and modified polyurethane as efficient and economic adsorbents for dyes. Secondly, we review the polyurethane-based membranes for separation and adsorption of various dyes. Thirdly, we describe polyurethane composites with improved efficiency of dyes removal. Finally, we review the bioremediation of dyes where polyurethane has been proven as an excellent inert support. 相似文献
343.
Natija Barhoumi Nihal Oturan Salah Ammar Abdellatif Gadri Mehmet A. Oturan Enric Brillas 《Environmental Chemistry Letters》2017,15(4):689-693
There is actually increasing concern about the accumulation of antibiotics, such as tetracycline, in soil and water bodies. There is therefore a need for efficient methods to degrade antibiotics and thus clean waters. Here we tested the degradation of tetracycline using the heterogeneous electro-Fenton-pyrite method and compared the results with the conventional electro-Fenton method. The reaction was performed with a boron-doped diamond or Pt anode and carbon-felt cathode allowing electrogeneration of H2O2 from O2 reduction. Results show an increasing tetracycline mineralization using the following methods: anodic oxidation with electrogenerated H2O2, electro-Fenton and then electro-Fenton-pyrite using boron-doped diamond. Ion-exclusion HPLC revealed the complete removal of malic malonic, succinic, acetic, oxalic and oxamic acids. Nitrogen present in tetracycline was mainly mineralized in NH4 +. The higher efficiency of electro-Fenton-pyrite is explained by self-regulation of soluble Fe2+ and pH to 3.0 from pyrite catalyst favoring larger ·OH generation from Fenton’s reaction. 相似文献
344.
Ryunosuke Uchiyama Hiroshi Okochi Hiroko Ogata Naoya Katsumi Daisuke Asai Takanori Nakano 《Environmental Chemistry Letters》2017,15(4):739-745
Stable isotope ratios of hydrogen and oxygen of water are useful tracers of the hydrological cycle. For example, isotopes monitor the evapotranspiration in vegetated areas, local snow ice processes and stream water flow processes. δ18O and δD in rainwater reflect the processes of evaporation, condensation and precipitation. Heavy rains thus modify the stable isotope ratio of ground water, stream water and transpiration water vapor. However, the controlling factors of δ18O and δD are not clear. Here we analyzed the inorganic ion concentration and stable isotope ratio in 38 normal rainwater and 15 heavy rainwater samples were collected in Shinjuku, Tokyo, Japan, during four years from October 2012 to December 2015. Results show a decrease in δ18O and δD values with the total rainfall amount, thus highlighting the amount effect. δ18O and δD volume-weighted mean values in typhoon heavy rain were higher than the values estimated from amount effect, whereas δ18O and δD volume-weighted mean values in urban-induced heavy rain were lower. Typhoon heavy rain has high Na+ ratio and stable isotope ratios, while urban-induced heavy rain has low Na+ ratio and stable isotope ratio. 相似文献
345.
Nearest neighbor (NN) methods are widely employed for drawing inferences about spatial point patterns of two or more classes. We introduce a method for testing reflexivity in the NN structure (i.e., NN reflexivity) based on a contingency table which will be called reflexivity contingency table (RCT) henceforth. The RCT is based on the NN relationships among the data points and was used for testing niche specificity in literature, but we demonstrate that it is actually more appropriate for testing the NN reflexivity pattern. We derive the asymptotic distribution of the entries of the RCT under random labeling and introduce tests of reflexivity based on these entries. We also consider Pielou’s approach on RCT and show that it is not appropriate for completely mapped spatial data. We determine the appropriate null hypotheses and the underlying conditions/assumptions required for all tests considered. We investigate the finite sample performance of the tests in terms of empirical size and power by extensive Monte Carlo simulations and illustrate the methods on two real-life ecological data sets. 相似文献
346.
Cajo J. F. ter Braak 《Environmental and Ecological Statistics》2017,24(2):219-242
Ecologists wish to understand the role of traits of species in determining where each species occurs in the environment. For this, they wish to detect associations between species traits and environmental variables from three data tables, species count data from sites with associated environmental data and species trait data from data bases. These three tables leave a missing part, the fourth-corner. The fourth-corner correlations between quantitative traits and environmental variables, heuristically proposed 20 years ago, fill this corner. Generalized linear (mixed) models have been proposed more recently as a model-based alternative. This paper shows that the squared fourth-corner correlation times the total count is precisely the score test statistic for testing the linear-by-linear interaction in a Poisson log-linear model that also contains species and sites as main effects. For multiple traits and environmental variables, the score test statistic is proportional to the total inertia of a doubly constrained correspondence analysis. When the count data are over-dispersed compared to the Poisson or when there are other deviations from the model such as unobserved traits or environmental variables that interact with the observed ones, the score test statistic does not have the usual chi-square distribution. For these types of deviations, row- and column-based permutation methods (and their sequential combination) are proposed to control the type I error without undue loss of power (unless no deviation is present), as illustrated in a small simulation study. The issues for valid statistical testing are illustrated using the well-known Dutch Dune Meadow data set. 相似文献
347.
The Deepwater Horizon oil spill occurred in the Gulf of Mexico on April 20, 2010. Considered the largest accidental marine oil spill in history, oil flowed for three months and approximately five million barrels of oil spilled through by mid-July 2010. In this article, we analyze bird data to assess the impact of the oil spill on the Gulf wildlife. Particularly, we want to determine in which regions Laughing Gulls were mostly affected by the oil spill, and whether those regions spatially shifted throughout the year 2010. Though our data sets have some limitations to apply statistical analysis methods, we obtained very interesting results. Our analyses showed the general consistency of the results based on two population data sets (from the 2011 Data Expo and from the eBird community) and justified the use of both publicly available data sets. We showed that the closer the surface oil spill area approached to the Laughing Gulls habitats, the more significant clusters of bird cases were observed. 相似文献
348.
Fine particulate matter (\(\hbox {PM}_{2.5}\)) events negatively affect the health of numerous persons globally each year. Previous works have described the association between air pollution and surface-level meteorological conditions; however, there has been less focus on the task of linking air pollution events with meteorological conditions at higher levels of the atmosphere. Working within the functional data framework, we develop a penalized functional quantile regression (PFQR) procedure to model conditional quantiles of a continuous response based on a functional covariate, with the ability to penalize selected derivatives of the estimated coefficient function. Our aim is to investigate the relationship between atmospheric profile variables (APVs), assumed to be functional, and key quantiles of the conditional distribution of surface-level \(\hbox {PM}_{2.5}\). Via a simulation study, we find that the performance of our PFQR procedure compares favorably to other related approaches. We conclude with an analysis of \(\hbox {PM}_{2.5}\) data at two Southeastern US locations, Columbia, SC and Tampa, FL, where we estimate the coefficient functions for the APVs corresponding to both ‘typical’ and ‘high’ \(\hbox {PM}_{2.5}\) events. As we believe that the true coefficient functions are smooth and may be exactly zero over subsets of their domains, we impose penalties on the 0th and 2nd derivatives. Our analysis indicates that the corresponding atmospheric conditions differ between the two locations, and that the conditions differ seasonally within location. 相似文献
349.
Manuel Vonrüti Aleksandar Spasojevic Nils Nölke Thomas Kneib Christoph Kleinn 《Environmental and Ecological Statistics》2017,24(3):385-398
Temperature is an important physical factor that is known to strongly affect biodiversity as well as ecosystems and their functioning. However, research in this area is still relatively limited; this may also be attributed to the multitude of influencing factors and the complexity of the statistics involved. This study analyzes the differences between the surface temperature of three Central European broadleaf tree species. A better understanding of these differences may help to elucidate the role of microclimate in biodiversity. We consider a time series of high-resolution thermal images taken from a meteorological observation tower and calculate mean canopy leaf temperatures for beech, ash and maple (Fagus silvatica, Fraxinus excelsior and Acer pseudoplatanus). In a first step, comparable image areas are extracted from the thermal image sections of the crown of each tree species avoiding shadow areas, branches, etc. We used an automatic segmentation technique, the Otsu thresholding. Extracted canopy leaf temperature values were then processed and the resulting temperature profiles estimated by O’Sullivan penalized splines. For comparing the differences in canopy leaf temperature over time, we propose the construction of simultaneous confidence bands. The analyses show that there are significant—though small—differences in canopy surface temperature between the three tree species. 相似文献
350.
Rocio Prieto Gonzalez Len Thomas Tiago A. Marques 《Environmental and Ecological Statistics》2017,24(3):399-414
Many simulation studies have examined the properties of distance sampling estimators of wildlife population size. When assumptions hold, if distances are generated from a detection model and fitted using the same model, they are known to perform well. However, in practice, the true model is unknown. Therefore, standard practice includes model selection, typically using model comparison tools like Akaike Information Criterion. Here we examine the performance of standard distance sampling estimators under model selection. We compare line and point transect estimators with distances simulated from two detection functions, hazard-rate and exponential power series (EPS), over a range of sample sizes. To mimic the real-world context where the true model may not be part of the candidate set, EPS models were not included as candidates, except for the half-normal parameterization. We found median bias depended on sample size (being asymptotically unbiased) and on the form of the true detection function: negative bias (up to 15% for line transects and 30% for point transects) when the shoulder of maximum detectability was narrow, and positive bias (up to 10% for line transects and 15% for point transects) when it was wide. Generating unbiased simulations requires careful choice of detection function or very large datasets. Practitioners should collect data that result in detection functions with a shoulder similar to a half-normal and use the monotonicity constraint. Narrow-shouldered detection functions can be avoided through good field procedures and those with wide shoulder are unlikely to occur, due to heterogeneity in detectability. 相似文献