首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
  国内免费   2篇
安全科学   3篇
废物处理   12篇
环保管理   2篇
综合类   35篇
基础理论   18篇
污染及防治   15篇
评价与监测   3篇
社会与环境   7篇
灾害及防治   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
  1961年   2篇
  1960年   2篇
  1958年   3篇
  1957年   2篇
  1955年   2篇
  1954年   3篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
41.
Sustainability science is a rapidly expanding field, particularly given the current ecological crises facing many parts of the globe today. To generate a snapshot of the state of sustainability science, we analyzed the current status of sustainability research using citation and text analysis. By reflecting social needs on sustainability science and the increasing number of publications in this field, the landscape is expected to change during the last decade. Our results indicate that previously separated research clusters investigating discipline-focused issues are becoming integrated into those studying coupled systems. We also found the existence of hub clusters bridging different clusters like socio-ecological systems and transition management. We also observed a variety of other emerging research clusters, especially in energy issues, technologies, and systems. Overall, our analysis suggests that sustainability science is a rapidly expanding and diversifying field, which has affected many disparate scientific disciplines and has the potential to feed scientific understanding on socio-ecological systems and to drive society toward transition for sustainability.  相似文献   
42.
43.
44.
45.
46.
47.
Hydrometallurgical recovery of zinc from ashes of automobile tire wastes   总被引:2,自引:0,他引:2  
Study has been performed on the investigation of metal leaching behavior for fly and bottom ashes from automobile tire wastes using acid and alkaline solutions from both viewpoints of environmental protection and resource utilization. The two ashes were found to contain substantial amounts of zinc and iron along with small quantities of cobalt, manganese, magnesium, copper, titanium and aluminum. The fly ash contained a much larger amount of zinc than the bottom ash, and seems to be a promising secondary source for the metal. Effects of such experimental parameters as temperature, time and solid-liquid ratio on the leaching behavior were investigated. Using three mineral acids and citric acid, selective leaching of zinc was successfully attained; the concentration of zinc in the leach liquors from the fly ash reached as high as 20 g l(-1) while the iron leaching was much suppressed. Selective separation of zinc was also attained in the leaching with alkaline solutions, though the percent leaching was lower than that in the acid leaching. Moreover, solvent extraction and precipitation were applied to the metal-loaded leach liquors as downstream processing to evaluate the feasibility of zinc recovery.  相似文献   
48.
Metabolism [respiratory oxygen consumption, electron-transfer-system (ETS) activity] and body composition [water, ash, carbon (C), nitrogen (N), carbon/nitrogen (C/N) ratio] of stage C5/C6 Neocalanus cristatus from 1000 to 2000 m depth of the Oyashio region, western subarctic Pacific, were determined during the period of July 2000 through June 2003. Compared with the C5 specimens from shallow depths (<250 m), those from 1000 to 2000 m were characterized by quiescent behavior, reduced respiration rates (30% of the rates at active feeding), very low water content (61–70% of wet weight), but high C content (56–64% of dry weight) and C/N ratios (7.2–10.6, by weight). Artifacts due to the recovery of live specimens from the bathypelagic zone appeared to be unlikely in this study, as judged by the consistent results between re-compression (100 atm) and non-compression (1 atm) respiration experiments, and between ETS activities and respiration rates directly measured. In addition, the respiration rates of C6 males and females of N. cristatus from the same 1000–2000 m depth were two to three times higher than the rates of C5 individuals, but were similar to the rates of a bathypelagic copepod, Paraeuchaeta rubra. Combining these results with literature data, C budgets of: (1) diapausing C5 specimens, weighing 6–10 mg dry weight; (2) molt to C6 females; and (3) the complete the life span were established, taking into account assorted losses in respiration during diapause at stages C5 and C6, molt production and egg production. Respiratory C losses by C5 and C6 specimens were estimated on the basis of body N as adjusted metabolic rates [AMR; µl O2 (mg body N)–0.843 h–1], then N budgets were also computed subtracting N lost in the form of cast molts and eggs from the initial stock. Calculations revealed that allocation of the C stock was greatest to egg production (34–57%), followed by respiration (27%) and cast molts (3%), leaving residual C of 13–36% in spent C6 females. The present results for N. cristatus from the North Pacific are compared with those of Calanus spp. in the North Atlantic.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   
49.
K. Yamaguchi 《Marine Biology》1998,132(4):651-661
The mobility of Anomia chinensis Philippi was studied in relation to its byssal development stage. This species shows high mobility even after it begins cementation in its post-larval stage. Juveniles develop a calcified byssus in the post-larval stage and cement to substrata. However, juveniles up to about 10 mm in shell length can relocate by repeating a sequence of formation of the calcified byssus, abandonment of it, locomotion by crawling, reattachment, and recementation. Juvenile anomiids up to 25 mm in shell length also can move, without breaking their byssal attachments, by shifting the center of byssal calcification dorsally. Even an adult can change its orientation by forming a twisted byssus. These possible methods of movement are closely related to five stages of byssal development. Anomiids can use this mobility to seek a preferable position for attachment after initial cementation, or to adjust their orientation, and thus promote higher survivorship. Received: 18 August 1997 / Accepted: 19 July 1998  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号