首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   22篇
环保管理   1篇
综合类   7篇
基础理论   7篇
环境理论   1篇
污染及防治   19篇
评价与监测   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
21.
Kobayashi T  Morimoto K  Tatsumi K 《Chemosphere》2008,70(11):2002-2008
Plants contain a wide variety of chemicals, some of which may have similar chromatographic behavior to polycyclic aromatic hydrocarbons (PAHs). During solid phase extraction (SPE) with Si-gel for instance, the co-elution of carotene-like colored compounds with PAHs has been observed. In this paper, liquid–liquid extraction was applied for the separation and subsequent analysis of PAHs from plant extracts. PAHs containing 2–6 rings, which include naphthalene, phenanthrene, pyrene, benzo[a]pyrene and benzo[ghi]perylene, were used as representative target chemicals. Carotene-like compounds extracted from Komatsuna (Brassica campestris) shoot by acetone followed by Si-gel treatment were incorporated as undesired components in the model matrix. Results showed the feasibility of employing either acetonitrile or 2% (w/v) KOH–methanol as solvents for high PAHs recovery and low extraction of colored fraction. For acetonitrile, 86.9–93.5% of each PAH could be recovered after three extraction cycles (relative standard deviation, RSD < 1.6%) with only about 10% co-extraction of colored fraction. For 2% KOH–methanol, PAHs recoveries ranging from 79.3% to 83.1% after five cycles (RSD < 1.5%) were achieved while the percent extraction of colored fraction was also low at 10%. The relatively higher selectivity of the solvents for PAHs over the colored fraction as well as the solubility of the matrix solution in the solvent may have contributed to these results. On this basis, liquid–liquid extraction is very useful for the pre-treatment of plant extracts for PAHs analysis.  相似文献   
22.
Stochastic models are used to express pathogen density in environmental samples for performing microbial risk assessment with quantitative uncertainty. However, enteric virus density in water often falls below the quantification limit (non-detect) of the analytical methods employed, and it is always difficult to apply stochastic models to a dataset with a substantially high number of non-detects, i.e., left-censored data. We applied a Bayesian model that is able to model both the detected data (detects) and non-detects to simulated left-censored datasets of enteric virus density in wastewater. One hundred paired datasets were generated for each of the 39 combinations of a sample size and the number of detects, in which three sample sizes (12, 24, and 48) and the number of detects from 1 to 12, 24 and 48 were employed. The simulated observation data were assigned to one of two groups, i.e., detects and non-detects, by setting values on the limit of quantification to obtain the assumed number of detects for creating censored datasets. Then, the Bayesian model was applied to the censored datasets, and the estimated mean and standard deviation were compared to the true values by root mean square deviation. The difference between the true distribution and posterior predictive distribution was evaluated by Kullback–Leibler (KL) divergence, and it was found that the estimation accuracy was strongly affected by the number of detects. It is difficult to describe universal criteria to decide which level of accuracy is enough, but eight or more detects are required to accurately estimate the posterior predictive distributions when the sample size is 12, 24, or 48. The posterior predictive distribution of virus removal efficiency with a wastewater treatment unit process was obtained as the log ratio posterior distributions between the posterior predictive distributions of enteric viruses in untreated wastewater and treated wastewater. The KL divergence between the true distribution and posterior predictive distribution of virus removal efficiency also depends on the number of detects, and eight or more detects in a dataset of treated wastewater are required for its accurate estimation.  相似文献   
23.
The objective of this study is to obtain information on the calorimetric behaviors of aqueous solutions of hydroxylamine (HA), hydroxylamine chloride (HACl), and hydroxylamine nitrate(HAN) caused by different Fe(III) states (free Fe(III) from Fe(NH4)(SO4)2, Fe(CN)63−, and Fe(EDTA)). The calorimetric data were obtained with a small-scaled reaction calorimeter, Super-CRC.

In the mixing with Fe(III), HA showed the highest reactivity among three substrates. Free Fe(III) and Fe(EDTA) showed catalytic effects in the reactions. In the overall heat of reactions, Fe(EDTA) exceeded free Fe(III), which precipitated as Fe(OH)3 and decreased the chances of interactions with HA. It was suggested that the generation of NH3 had taken place in the process of reducing HA along with Fe(II) oxidation. Fe(CN)63− was less reactive than free Fe(III) and Fe(EDTA).

The ability of masking Fe(III) was estimated for CyDTA. The HA including CyDTA had no exothermic peak; however, there was an endothermic peak of the heat flow at Fe(III) injection. CyDTA was found to have the ability to inhibit a violent exothermic reaction of HA.  相似文献   

24.
Nitrous oxide (N2O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N2O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N2O emission with ammonia removal. N2O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N2O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N2O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30–40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O2 content can infuse N2O production during nitrification and high O2 inhibit denitrification which would affect N2O production. The findings provide insights concerning the production potentials of N2O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover.

Implications: Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30–40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.  相似文献   

25.
Roadside air pollution due to heavy traffic is one of the unsettled issues in the atmospheric environment in urban areas. As a practical application of a Computational Fluid Dynamics (CFD) model, a coupled mesoscale-CFD model was applied to the Ikegamicho area of Kawasaki City, Japan. For this study, the effects of traffic-produced flow and turbulence (TPFT) on the dispersion of the pollutants near the heavy traffic road were mainly investigated in an actual urban area. First, a series of preliminary CFD calculations was conducted for a road tunnel field experiment to obtain a fitting parameter for the traffic-produced flow. The calculation was then performed for 24 h in December 2005 around Ikegamicho, and the results were compared with the data at a roadside monitoring post in the area, located 10 m from the boundary of the ground road. In general, the effect of traffic-produced flow and turbulence was limited at the downstream side of the roads. The maximum concentration of NOx was reduced and smoothed out along the traffic flow by the traffic-produced flow and turbulence on the road. The effects of traffic-produced turbulence on the dispersion of pollutants were greater than those of traffic-produced flow; however, the effects of traffic-produced flow were not negligible. The concentration of pollutants was not particularly dependent on the turbulent Schmidt number because most of the emission sources were introduced as volume sources in the present calculations, and the effect caused by differences in the material diffusion coefficient was not particularly significant at the outside of the road.  相似文献   
26.
Many simulations of collective behavior have been presented in recent years. Recently, a pioneering study by [Ballerini et al., 2008a] and [Ballerini et al., 2008b] suggested that the interactions of birds in a flock should be modeled using the topological distance rather than the metric distance. The concept of topological distance is deemed important for explaining collective behavior. However, few studies have discussed the distinctions between the metric and topological distances. In this paper, we clarify the difference between models based on the topological and metric distances and propose a new hybrid model of these models. The agent of our model switches between these two interactions by tuning the threshold parameters. We show that this hybrid flocking model has the medium property between the metric and the topological distance. In other words, the agents of our hybrid model can dramatically make and divide flock by tuning their neighborhoods. This result suggests that making and dividing flock would be deeply connected with animal's cognition.  相似文献   
27.
To assess the effect of tree planting on atmospheric phenol, a study was made on the absorption of phenol by various tree species and the tolerance of these species to phenol. The absorption rates ranged from 21.3 (camellia) to 129 ng dm‐2h‐1 ppb‐1 (Japanese elm) at 1000 μmol of photons m‐2 s‐1, and the absorption rate increased in the following order: coniferous tree species ? evergreen broad‐leaved tree species < deciduous broad‐leaved tree species. When the light intensity was varied, a linear relationship between the phenol absorption rate and the transpiration rate was observed for three tree species. In comparison with the absorption rate estimated from a simplified gas diffusive resistance model, we conclude that phenol is absorbed through the stomata and is metabolized fairly rapidly within the leaf tissue, although the absorption rate is less than the estimated potential absorption rate. At phenol concentrations below 200 ppb, the tree can absorb atmospheric phenol for at least 8 h without any visible foliar injury. Trees in general could act as an important sink for atmospheric phenol at phenol concentrations less than 200 ppb, a concentration about twenty times higher than normal ambient levels.  相似文献   
28.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   
29.
随着生活垃圾焚烧技术的普及,垃圾焚烧飞灰的资源化利用迫在眉睫,然而飞灰中的高浓度氯元素严重阻碍了其资源化进程.水洗技术作为常用的脱氯除盐技术,得到越来越多的应用,但除氯效果受飞灰自身性质特征影响较大.本研究从重庆和天津采集了两种理化性质具有较大差异的垃圾焚烧飞灰,在对其粒径分布、化学组成、矿物组成、pH值和浸出毒性等基本特征进行分析表征的基础上,采用水洗技术和碳酸化水洗技术对两种飞灰进行了脱氯处理.结果表明,重庆飞灰氯元素的赋存形态包括NaCl、KCl等可溶性氯盐,还含有较高浓度的难溶氯盐(如CaClOH、Friedel盐和Ca6(CO3)2(OH)7Cl),因此,水洗技术难以达到理想的脱氯效果,氯盐去除率最高为88%.在水洗过程中通入CO2可以显著降低反应体系的pH值,促进难溶盐的转化和溶解,进而提高飞灰氯盐的去除率.重庆飞灰采用加速碳酸化水洗技术,氯盐去除率最高可达94%.天津飞灰中氯元素主要以可溶性氯盐的形式存在,难溶盐占比很少,因此,水洗技术可以达到较高的脱盐率(96%).采用加速碳酸化技术对天津飞灰进行处理,发现氯盐去除率较纯水洗技术反而有所降低,分析其主要原因可能与加速碳酸化过程中碳酸钙等物质的再沉淀对氯盐的裹挟作用有关.由此可知,飞灰自身性特征尤其是氯盐的赋存形态对于脱氯除盐技术的选择有重要影响.因此,实际资源化利用过程中,可根据飞灰性质来决定预处理手段,从而最大化提升效率和节约成本.  相似文献   
30.
Atmospheric mercury emissions have attracted great attention owing to adverse impact of mercury on human health and the ecosystem. Although waste combustion is one of major anthropogenic sources, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated atmospheric emissions of speciated mercury from the combustions of municipal solid wastes (MSW), sewage treatment sludge (STS), STS with waste plastics, industrial waste mixtures (IWM), waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form at the inlet side of air pollution control devices in all combustion cases. Its concentration was 2.0-70.6 times larger than elemental mercury concentration. In particular, MSW, STS, and IWM combustions emitted higher concentration of reactive gaseous mercury. Concentrations of both gaseous mercury species varied greatly for all waste combustions excluding woody waste. Variation coefficients of measured data were nearly equal to or more than 1.0. Emission factors of gaseous elemental mercury, reactive gaseous mercury, and total mercury were calculated using continuous monitoring data. Total mercury emission factors are 0.30 g-Hg/Mg for MSW combustion, 0.21 g-Hg/Mg for STS combustion, 0.077 g-Hg/Mg for STS with waste plastics, 0.724 g-Hg/Mg for industrial waste mixtures, 0.028 g-Hg/Mg for waste plastic combustion, and 0.0026 g-Hg/Mg for woody waste combustion. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号