首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   4篇
安全科学   5篇
废物处理   6篇
环保管理   3篇
综合类   8篇
基础理论   22篇
污染及防治   25篇
评价与监测   16篇
社会与环境   9篇
灾害及防治   1篇
  2023年   3篇
  2022年   9篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2014年   2篇
  2013年   16篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1978年   1篇
  1976年   1篇
  1961年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
61.

Adsorptive removal of copper by activated carbon derived from modified rice husk (ACRH) was studied in the presence and absence of magnetic field (MF). The ACRH was prepared from the normal rice husk treated by NaOH solution and subsequent pyrolysis at 450 °C in the absence of oxygen. The physicochemical properties of ACRH's were determined before and after the adsorption process to delineate the adsorption mechanism. The BET analysis confirmed that the fabricated ACRH has a specific surface area of 8.244 m2/g with a mesopore to micropore ratio of 0.974. It was observed that the micropore structure gradually replaced the mesopores, and the surface area of the micropore increased (from 0.9219 to 4.1764 m2/g), and the pore diameter was also decreased from 180.381 to 46.249 Å after pyrolysis. The CHNO/S test result reveals that the carbon content was increased from 42 to 67.8% in the ACRH after pyrolysis. The batch sorption studies were performed by varying the initial adsorbate concentration, temperature, agitation speed, pH, adsorbent dose and contact time for magnetic and non-magnetic conditions to analyze the effect of the magnetic field. The univariate studies show that the maximum experimental adsorption capacity was 4.522 mg/g and 3.855 mg/g, respectively, for these two conditions (representing the magnetic impact) at 25 °C with an adsorbent dose of 2 g/L and an agitation speed of 150 rpm. It was also observed that the removal efficiency was 94.55% and 77.96% (magnetic and non-magnetic condition) at pH 7 with a concentration of 10 mg/L in 2 h. The test result on the impact of exposure time on the magnetic field suggested that the magnetic memory influenced the removal efficiency; after 40 to 60 min, the maximum removal efficiency was achieved, around 80 to 90%. The pseudo-second-order kinetic model was best fitted with the experimental data with a rate constant as 0.1749 and 0.1006 g/mg/min for these two conditions. The Temkin model delineates the adsorption isotherm suggesting the heat generated during the adsorption process is linearly abate with the coverage of the surface area of the adsorbent. The thermodynamic model confirms that the copper adsorption is spontaneous (ΔG = ? 3.91 kJ/mol and ? 6.02 kJ/mol), wherein the negative enthalpy value (ΔH = ? 36.74 kJ/mol and ? 25.74 kJ/mol) suggested that the process is exothermic irrespective of magnetic interference. The significant enhancement of copper removal was observed by incorporating the magnetic field, showing an increase in sorption capacity by 17.48% and a reduction of reaction time by 88.12%.

  相似文献   
62.
Intravenous injection of barbiturates, particularly pentobarbital (5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,5-trione), is a widely used method to euthanize large animals such as horses. However, one concern with this method is the fate of pentobarbital after the disposal of the carcass. As tissues decompose, pentobarbital may leach into the soil and from there migrate to groundwater. A method using methanol extraction, solid phase concentration, and liquid chromatography (LC/MS) has been developed to measure pentobarbital in soils. Recovery of pentobarbital from soil averaged approximately 85% from different soil types including topsoil, potting soil, sand, stall sweepings, and loam. The method was capable of detecting pentobarbital levels of 0.1 ppm. A calibration curve was constructed with a linear range of 1 ppm to 100 ppm. The limit of quantification was 0.5 ppm. The rate of degradation of pentobarbital in sand, topsoil, and potting soil was measured over a 17-week period. At the end of week 17, approximately 17% of the pentobarbital remained in the sand, 19% remained in the topsoil, and 10% remained in the potting soil. While there was a significant decrease in the pentobarbital recovered from the soil, there were still detectable amounts of pentobarbital present in the soil after 17 weeks. To determine the importance of bacterial degradation, the three soil types were autoclaved before addition of pentobarbital. After autoclaving, no degradation of pentobarbital was observed in sand and one topsoil sample, while there was no difference in the degradation of pentobarbital in autoclaved potting soil versus potting soil that had not undergone autoclaving.  相似文献   
63.
Journal of Material Cycles and Waste Management - Solid waste management is one of the major problems in the twenty-first century. Utilizations of the food/Agro waste materials are crucial to...  相似文献   
64.

At present, flood is the most significant environmental problem in the entire world. In this work, flood susceptibility (FS) analysis has been done in the Dwarkeswar River basin of Bengal basin, India. Fourteen flood causative factors extracted from different datasets like DEM, satellite images, geology, soil and rainfall data have been considered to predict FS. Three heuristic models and one statistical model fuzzy Logic (FL), frequency ratio (FR), multi-criteria decision analysis (MCDA) and logistic regression (LR) have been used. The validating datasets are used to validate these models. The result shows that 68.71%, 68.7%, 60.56% and 48.51% area of the basin is under the moderate to very high FS by the MCDA, FR, FL and LR, respectively. The ROC curve with AUC analysis has shown that the accuracy level of the LR model (AUC?=?0.916) is very much successful to predict the flood. The rest of the models like FL, MCDA and FR (AUC?=?0.893, 0.857 and 0.835, respectively) have lesser accuracy than the LR model. The elevation was the most dominating factor with coefficient value of 19.078 in preparation of the FS according to the LR model. The outcome of this study can be implemented by local and state authority to minimize the flood hazard.

  相似文献   
65.
Adsorption of arsenic(V) by activated carbon prepared from oat hulls   总被引:3,自引:0,他引:3  
Chuang CL  Fan M  Xu M  Brown RC  Sung S  Saha B  Huang CP 《Chemosphere》2005,61(4):478-483
The efficiency of self-manufactured activated carbon (AC) produced from oat hulls in adsorbing arsenic(V) was tested in a batch reactor. The results indicated that the adsorptive capacity of AC was affected by initial pH value, with adsorption capacity decreasing from 3.09 to 1.57 mg As g(-1) AC when the initial pH values increased from 5 to 8. A modified linear driving force model conjugated with a Langmuir isotherm was created to describe the study's kinetics. The test results show that rapid adsorption and slow adsorption exist simultaneously when AC is used to remove arsenic(V).  相似文献   
66.
• Simultaneous C & N removal in Methammox occurs at wide C:N ratio. • Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported. • Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio. • Acetogenic population compensated for ammonia oxidizers at high C:N ratio. • Methanogens increase the plasticity of nitrogen removers at high C:N ratio. High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.  相似文献   
67.
The paper deals with the measurement of five heavy metals viz., Cd, Cu, Mn, Pb and Zn in water of the rivers Hooghly and Haldi at Haldia during June 1999 to October 2002. The industrial effluent out fall (OF) at Patikhali, Haldia was also taken as sampling site along with above out fall (AOF) and below out fall (BOF) sites. Most of the metals exhibited their least concentration at the sampling site above the Haldia industrial area of river Hooghly. The average concentrations of the studied metals were Cd 2-14, Cu 5-19, Mn 8-88, Pb 17-41 and Zn 22-37 microg l(-1). Comparison of the data with the Criterion Continuous Concentration (CCC) of USA revealed that Cd, Cu and Pb were the pollutants present at alarming level to disturb the aquatic life process in the zone. The effect was found to reflect on the tissue level aberrations in the residential fishes. The other two metals viz., Mn and Zn were probably less harmful to the aquatic ecosystem. In India, necessity is felt to develop the CCC values, which will be more appropriate for protection of aquatic environment than comparing with drinking water standards.  相似文献   
68.
The present paper is the first document of a detailed geochemical and mineralogical study of muddy to sandy mud estuarine sediments of the Hugli River collected from five different sites along its course in the coastal areas of West Bengal, northeast India. The present work attempts to establish the status of distribution and environmental implications of 52 elements in the surficial estuarine sediments and their possible sources of derivation. The level of both metallic and non-metallic elements shows a wide range of variation all along the course of the estuary and can be attributed to their differential derivation from the source rocks and differential discharge of untreated effluents originating from industrial, agricultural, aquacultural as well as domestic sewage. The element contents, particularly the heavy metal content in the sediments, are the lowest in the upstream part of the estuary at Diamond Harbor, whereas, these are slightly higher in the intermediate stretch of the estuary at Haldia to highest in the mouth of estuary at Gangasagar. These changes indicate that the metals that are carried from upstream find their ultimate depositional sink at the delta mouth near Gangasagar, where almost all the elements showed elevated values. The majority of the elements have their highest concentrations at Canning, a site within the tidal channel network of the Hugli-Matla drainage basin away from the direct influence of the Hugli River. This site is severely contaminated with huge organic load from domestic sewage, aquaculture, intensive trawling activities and agricultural runoff. Moreover, the site suffers from heavy siltation load causing an almost moribund condition of Matla River at this point. Equi-dimensional quartzo-feldspathic mineral grains are consistent components in the siliciclastic composition of the sediments and their sizes at each station are controlled by respective hydrodynamic conditions. Various flaky minerals (mica, chlorite, hornblende) are also present but show inconsistent patterns of distribution. These flaky minerals remain in suspension for a long time and do not follow the usual law of settling of particles depending on the hydrodynamic regime prevailing in the area. Presented data will serve as a baseline against which future anthropogenic effects may be assessed. A comprehensive account of heavy metal content in sediments from different coastal regions of peninsular India has also been presented for purpose of comparison.  相似文献   
69.
70.
Vermicompost is a very important biofertilizer produced through the artificial cultivation of worms i.e. Vermiculture. Vermicompost is enriched with all beneficial soil bacteria and also contain many of the essential plant nutrients like N, P, K and micronutrients. It increases soil aeration, texture and jilt. In this work, study is being carried out to find out the effect of different fertilizers such as DAF, FYM and Vermicompost on various morphological parameters and on the in vitro growth of bacterial colonies and its diversity in relation to two important leguminous plants such as Pisum sp. and Cicer sp. Results showed that plant grown in Vermicompost pretreated soil exhibited maximum increase in all morphological parameters such as root length, shoot length, number of root branches, number of stem branches, number of leaves, number of flowers, number of pods and number of root nodules in four months sampling in comparison to untreated, FYM treated and DAP treated soils. Further in Vermicompost pretreated soil, number of N2 fixing bacterial colony was maximum and showed highest diversity indices (1.6 and 0.99 and 2.0 and 0.99 for Cicer sp. and Pisum sp. respectively) than FYM, DAP and untreated control. Thus not only does the Vermicompost stimulate plant growth but also it increases the N2 fixing bacterial population in soil and also its diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号