首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   1篇
安全科学   4篇
废物处理   9篇
环保管理   11篇
综合类   15篇
基础理论   22篇
污染及防治   39篇
评价与监测   23篇
社会与环境   8篇
灾害及防治   1篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   1篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   10篇
  2012年   10篇
  2011年   6篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1969年   1篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
111.
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites.  相似文献   
112.
The increasing demand for environmental pollution control results in the development and use of new procedures for the determination of dangerous chemicals. Simple screening methods, which can be used directly in the field for a preliminary assessment of soil contamination, seem to be extremely advantageous. In our laboratory, we developed and optimized a rapid test for a preliminary evaluation of both the concentration and the mobility of some potentially toxic metals in soils. This screening test consists of a single extraction of the soil sample with a buffer solution, followed by the titration of the extracted solution with dithizone to determine the contents of bi-valent heavy metals (such as Pb, Cu, Zn, and Cd). This screening method was then directly applied in the field during the sampling campaign in the framework of an Italian–Serbian collaborative project, finalized in the study of metal availability in soils. The results obtained in the field with the rapid test were compared with those obtained in the laboratory following the conventional procedure commonly used to evaluate metal bioavailability (diethylenetriaminepentaacetic extraction). Moreover, selected samples were analyzed sequentially in the laboratory using the standardized BCR three-step sequential extraction procedure. The screening test gave results conceptually in good agreement with those obtained via the BCR procedure. These preliminary data show that the proposed screening test is a reliable method for the preliminary rapid evaluation of metal total concentrations and of potential metal mobility in soils, supporting sampling activities directly in the field.  相似文献   
113.
Journal of Material Cycles and Waste Management - One of the most significant environmental problems the world population faces is the inadequate disposal of petroleum derivatives. Lubricant oil is...  相似文献   
114.
The paper describes the fieldwork at the Italian test site of the abandoned mine of sphalerite and galena in Ingurtosu (Sardinia), with the aim to assess the applicability of a “toolbox” to establish the optimized techniques for remediation of soils contaminated by mining activities. A preliminary characterization—including (hydro)geochemistry, heavy metal concentration and their mobility in soil, bioprospecting for microbiology and botany—provided a data set for the development of a toolbox to deliver a microbially assisted phytoremediation process. Euphorbia pithyusa was selected as an endemic pioneer plant to be associated with a bacterial consortium, established with ten selected native strains, including metal-tolerant bacteria and producers of plant growth factors. The toolbox was firstly assessed in a greenhouse pot experiment. A positive effect of bacterial inoculum on E. pithyusa germination and total plant survival was observed. E. pithyusa showed to be a well-performing metallophyte species, and only inoculated soil retained a microbial activity with a high functional diversity, expanding metabolic affinity also towards root exudates. These results supported the decision to proceed with a field trial, investigating different treatments used singly or in combination: bioaugmentation with bacterial consortia, mycorrhizal fungi and a commercial mineral amendment. Microbial activity in soil, plant physiological parameters and heavy metal content in plants and in soil were monitored. Five months after the beginning, an early assessment of the toolbox under field conditions was carried out. Despite the cold season (October–March), results suggested the following: (1) the field setup as well as the experimental design proved to be effective; (2) plant survival was satisfactory; (3) soil quality was increased and bioaugmentation improved microbial activity, expanding the metabolic competences towards plant interaction (root exudates); and (4) multivariate analysis supported the data provided that the proposed toolbox can be established and the field trial can be carried forward.  相似文献   
115.
116.
117.
The cupuassu shell (Theobroma grandiflorum) which is a food residue was used in its natural form as biosorbent for the removal of C.I. Reactive Red 194 and C.I. Direct Blue 53 dyes from aqueous solutions. This biosorbent was characterized by infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption curves. The effects of pH, biosorbent dosage and shaking time on biosorption capacities were studied. In acidic pH region (pH 2.0) the biosorption of the dyes were favorable. The contact time required to obtain the equilibrium was 8 and 18 h at 298 K, for Reactive Red 194 and Direct Blue 53, respectively. The Avrami fractionary-order kinetic model provided the best fit to experimental data compared with pseudo-first-order, pseudo-second-order and chemisorption kinetic adsorption models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Radke-Prausnitz isotherm models. For both dyes the equilibrium data were best fitted to the Sips isotherm model.  相似文献   
118.
Antimicrobial resistance and the mechanisms implicated were studied in 54 enterococci recovered from 57 seagull fecal samples. Almost 78% of the recovered enterococci showed resistance against one or more antibiotics and these isolates were identified to the species level. E. faecium was the most prevalent species (52.4%). High percentages of erythromycin and tetracycline resistances were found among our isolates (95.2%), and lower percentages were identified to other antibiotics. Most of the tetracycline-resistant strains carried the tet(M) and/or tet(L) genes. Genes associated with Tn916/Tn1545 and/or Tn5397 transposons were detected in 45% of tetracycline-resistant isolates. The erm(B) gene was detected in 65% of erythromycin-resistant isolates. The vat(D) and vat(E) genes were present in 5.9% and 11.8% of quinupristin/dalfopristin-resistant isolates, respectively. The ant(6)-Ia gene was identified in 57.1% of streptomycin-resistant isolates. All nine kanamycin-resistant isolates carried the aph(3)'-IIIa gene. The cat(A) gene was found in two chloramphenicol-resistant isolates. Seagulls should be considered a risk species for spreading in the environment antimicrobial resistant enterococci and can serve as a sentinel for antibiotic pressure from the surrounding farm and urban setting.  相似文献   
119.
120.
Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars.The chars were subjected to the leaching test ISO/TS 21268 – 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri.The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE).The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars.Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号