首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   6篇
  国内免费   1篇
安全科学   10篇
废物处理   3篇
环保管理   111篇
综合类   22篇
基础理论   139篇
污染及防治   90篇
评价与监测   46篇
社会与环境   6篇
灾害及防治   8篇
  2022年   3篇
  2019年   5篇
  2018年   2篇
  2017年   8篇
  2016年   16篇
  2015年   3篇
  2014年   7篇
  2013年   47篇
  2012年   15篇
  2011年   21篇
  2010年   14篇
  2009年   18篇
  2008年   23篇
  2007年   18篇
  2006年   24篇
  2005年   11篇
  2004年   23篇
  2003年   14篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   7篇
  1982年   8篇
  1981年   3篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1954年   1篇
  1930年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
311.
312.
The degree to which turnover in biological communities is structured by deterministic or stochastic factors and the identities of influential deterministic factors are fundamental, yet unresolved, questions in ecology. Answers to these questions are particularly important for projecting the fate of forests with diverse disturbance histories worldwide. To uncover the processes governing turnover we use species-level molecular phylogenies and functional trait data sets for two long-term tropical forest plots with contrasting disturbance histories: one forest is older-growth, and one was recently disturbed. Having both phylogenetic and functional information further allows us to parse out the deterministic influences of different ecological filters. With the use of null models we find that compositional turnover was random with respect to phylogeny on average, but highly nonrandom with respect to measured functional traits. Furthermore, as predicted by a deterministic assembly process, the older-growth and disturbed forests were characterized by less than and greater than expected functional turnover, respectively. These results suggest that the abiotic environment, which changes due to succession in the disturbed forest, strongly governs the temporal dynamics of disturbed and undisturbed tropical forests. Predicting future changes in the composition of disturbed and undisturbed forests may therefore be tractable when using a functional-trait-based approach.  相似文献   
313.
Characterization of vertebrate chemo-orientation strategies over long distances is difficult because it is often not feasible to conduct highly controlled hypothesis-based experiments in natural environments. To overcome the challenge, we couple in-stream behavioral observations of female sea lampreys (Petromyzon marinus) orienting to plumes of a synthesized mating pheromone, 7α,12α,24-trihydroxy-5α-cholan-3-one-24-sulfate (3kPZS), and engineering algorithms to systematically test chemo-orientation hypotheses. In-stream field observations and simulated movements of female sea lampreys according to control algorithms support that odor-conditioned rheotaxis is a component of the mechanism used to track plumes of 3kPZS over hundreds of meters in flowing water. Simulated movements of female sea lampreys do not support that rheotaxis or klinotaxis alone is sufficient to enable the movement patterns displayed by females in locating 3kPZS sources in the experimental stream. Odor-conditioned rheotaxis may not only be effective at small spatial scales as previous described in crustaceans, but may also be effectively used by fishes over hundreds of meters. These results may prove useful for developing management strategies for the control of invasive species that exploit the odor-conditioned tracking behavior and for developing biologically inspired navigation strategies for robotic fish.  相似文献   
314.
As coastal populations expand, demands for recreational opportunities on beaches and coastal dunes grow correspondingly. Although dunes are known to be sensitive to direct human disturbance and provide irreplaceable ecosystem services (e.g. erosion control, critical habitat and nesting sites), dunes serve as campsites for large numbers of people (∼90,000 p.a.) on the ocean-exposed shores of Fraser Island, Australia. Campsites are located in the established dunes and can only be accessed with 4WD vehicles along tracks cut directly from the beach through the foredunes. Here we quantified the extent of physical damage to foredunes caused by this practice, and tested whether human-induced physical changes to foredunes translate into biological effects. Of the 124 km of ocean-exposed beaches, 122 km (98%) are open to vehicles driven on the beaches, and camping zones cover 28.7 km or 23% of the dunes. A total of 235 vehicle tracks are cut across the foredunes at an average density of eight tracks per km of beach. These tracks have effectively destroyed one-fifth (20.2%) of the dune front in camping zones, deeply incising the dune-beach interface. There is evidence of accelerated erosion and shoreline retreat centred around vehicle tracks, resulting in a “scalloping” of the shoreline. No dune vegetation remains in the tracks and the abundance of ghost crabs (Ocypode spp.) is significantly reduced compared with the abutting dunes. Because current levels of environmental change caused by dune camping may not be compatible with the sustainable use of coastal resources and conservation obligations for the island (listed as a World Heritage Area and gazetted as a National Park), restoration and mitigation interventions are critical. These will require spatial prioritisation of effort, and we present a multi-criteria ranking method, based on quantitative measures of environmental damage and ecological attributes, to objectively target rehabilitation and conservation measures. Ultimately, coastal management needs to develop and implement strategies that reconcile demands for human recreation, including beach camping, with conservation of coastal dune ecosystems.  相似文献   
315.
The link between biodiversity and ecosystem functioning is now well established, but the challenge remains to develop a mechanistic understanding of observed effects. Predator-prey interactions provide an opportunity to examine the role of resource partitioning, thought to be a principal mediator of biodiversity-function relationships. To date, interactions between multiple predators and their prey have typically been investigated in simplified agricultural systems with limited scope for resource partitioning. Thus there remains a dearth of studies examining the functional consequences of predator richness in diverse food webs. Here, we manipulated a species-rich intertidal food web, crossing predator diversity with total predator density, to simultaneously examine the independent and interactive effects of diversity and density on the efficiency of secondary resource capture. The effect of predator diversity was only detectable at high predator densities where competitive interactions between individual predators were magnified; the rate of resource capture within the species mixture more than doubled that of the best-performing single species. Direct observation of species-specific resource use in monoculture, as quantified by patterns of prey consumption, provided clear evidence that species occupied distinct functional niches, suggesting a mechanistic explanation of the observed diversity effect.  相似文献   
316.
Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery of tall willow stands. Because tall willow stems are important elements of habitat for beaver, mitigating water table decline may be necessary in these areas to promote recovery of historical willow-beaver mutualisms.  相似文献   
317.
Thompson CM  Gese EM 《Ecology》2007,88(2):334-346
Trophic level interactions between predators create complex relationships such as intraguild predation. Theoretical research has predicted two possible paths to stability in intraguild systems: intermediate predators either outcompete higher-order predators for shared resources or select habitat based on security. The effects of intraguild predation on intermediate mammalian predators such as swift foxes (Vulpes velox) are not well understood. We examined the relationships between swift foxes and both their predators and prey, as well the effect of vegetation structure on swift fox-coyote (Canis latrans) interactions, between August 2001 and August 2004. In a natural experiment created by the Pinon Canyon Maneuver Site in southeastern Colorado, USA, we documented swift fox survival and density in a variety of landscapes and compared these parameters in relation to prey availability, coyote abundance, and vegetation structure. Swift fox density varied significantly between study sites, while survival did not. Coyote abundance was positively related to the basal prey species and vegetation structure, while swift fox density was negatively related to coyote abundance, basal prey species, and vegetation structure. Our results support the prediction that, under intraguild predation in terrestrial systems, top predator distribution matches resource availability (resource match), while intermediate predator distribution inversely matches predation risk (safety match). While predation by coyotes may be the specific cause of swift fox mortality in this system, the more general mechanism appears to be exposure to predation moderated by shrub density.  相似文献   
318.
The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa (64.4%) occupied integer trophic positions, suggesting that discrete trophic levels do exist. Importantly however, the majority of those trophic positions were aggregated around integer values of 0 and 1, representing plants and herbivores. For the majority of the real food webs considered here, secondary consumers were no more likely to occupy an integer trophic position than in randomized food webs. This means that, above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores. Omnivory was most common in marine systems, rarest in streams, and intermediate in lakes and terrestrial food webs. Trophic-level-based concepts such as trophic cascades may apply to systems with short food chains, but they become less valid as food chains lengthen.  相似文献   
319.
La Sorte FA  Thompson FR 《Ecology》2007,88(7):1803-1812
Climate change is thought to promote the poleward movement of geographic ranges; however, the spatial dynamics, mechanisms, and regional anthropogenic drivers associated with these trends have not been fully explored. We estimated changes in latitude of northern range boundaries, center of occurrence, and center of abundance for 254 species of winter avifauna in North America from 1975 to 2004. After accounting for the effect of range size and the location of the northern boundary, positive latitudinal trends were evident for the northern boundary (1.48 km/yr), center of occurrence (0.45 km/yr), and center of abundance (1.03 km/yr). The northern boundary, when examined across individual species, had the most variable trends (SD = 7.46 km/yr) relative to the center of occurrence (SD = 2.36 km/yr) and center of abundance (SD = 5.57 km/yr). Trends did not differ based on migratory status, but there was evidence that trends differed for species with ranges centered in the southern vs. northern portion of the study area. Species occurred more sporadically over time at northern range boundaries, and northern boundaries were associated with a concentration of colonization and extirpation events, with a greater prevalence of colonization events likely promoting poleward trends. Regional anthropogenic drivers explained approximately 8% of the trend for the northern boundary, 14% for the center of occurrence, and 18% for the center of abundance; however, these effects were localized in the northern portion of species' ranges and were associated with distributional changes within ranges, primarily abundance, producing patterns that mimicked poleward movements. We conclude that poleward distributional shifts represent the interaction between climate change and regional factors whose outcome is determined by the scale of the analysis and the biotic and abiotic features in the region, and how anthropogenic activities have impacted these features.  相似文献   
320.
The relative importance of biotic, abiotic, and stochastic processes in structuring ecological communities continues to be a central focus in community ecology. In order to assess the role of phylogenetic relatedness on the nature of biodiversity we first quantified the degree of phylogenetic niche conservatism of several plant traits linked to plant form and function. Next we quantified the degree of phylogenetic relatedness across two fundamental scaling dimensions: plant size and neighborhood size. The results show that phylogenetic niche conservatism is likely widespread, indicating that closely related species are more functionally similar than distantly related species. Utilizing this information we show that three of five tropical forest dynamics plots (FDPs) exhibit similar scale-dependent patterns of phylogenetic structuring using only a spatial scaling axis. When spatial- and size-scaling axes were analyzed in concert, phylogenetic overdispersion of co-occurring species was most important at small spatial scales and in four of five FDPs for the largest size class. These results suggest that phylogenetic relatedness is increasingly important: (1) at small spatial scales, where phylogenetic overdispersion is more common, and (2) in large size classes, where phylogenetic overdispersion becomes more common throughout ontogeny. Collectively, our results highlight the critical spatial and size scales at which the degree of phylogenetic relatedness between constituent species influences the structuring of tropical forest diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号