首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   15篇
  国内免费   7篇
安全科学   43篇
废物处理   49篇
环保管理   192篇
综合类   47篇
基础理论   142篇
环境理论   1篇
污染及防治   143篇
评价与监测   47篇
社会与环境   25篇
灾害及防治   8篇
  2023年   7篇
  2022年   5篇
  2021年   9篇
  2020年   13篇
  2019年   14篇
  2018年   27篇
  2017年   17篇
  2016年   22篇
  2015年   21篇
  2014年   27篇
  2013年   46篇
  2012年   30篇
  2011年   41篇
  2010年   42篇
  2009年   26篇
  2008年   39篇
  2007年   47篇
  2006年   37篇
  2005年   21篇
  2004年   21篇
  2003年   21篇
  2002年   25篇
  2001年   9篇
  2000年   13篇
  1999年   13篇
  1998年   7篇
  1997年   6篇
  1996年   12篇
  1995年   12篇
  1994年   8篇
  1993年   10篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1971年   1篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
291.
Gagnon PR  Passmore HA  Platt WJ  Myers JA  Paine CE  Harms KE 《Ecology》2010,91(12):3481-6; discussion 3503-14
Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our "pyrogenicity as protection" hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis.  相似文献   
292.
O'Leary JK  McClanahan TR 《Ecology》2010,91(12):3584-3597
Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Ni?o Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.  相似文献   
293.
Recent studies have reported that earthworm invasions alter native communities and impact nutrient cycling in terrestrial ecosystems. We developed a simulation model to evaluate the potential impacts of earthworm invasions on carbon dynamics, taking into consideration earthworm feeding strategies and priming effects on the microorganisms through their casting activities. Responses of carbon stocks (forest litter, soil organic matter, microbial biomass and earthworm populations) and carbon fluxes (litter decomposition, earthworm consumption, and microbial respiration) were used to evaluate an earthworm invasion of a forest ecosystem. Data from a northern temperate forest (Arnot Forest, New York) were adapted for model calibration and evaluation. Simulation results suggest that the impact and outcome of earthworm invasions are affected by pre-invasion resource availability (litter and soil organic matter), invasive earthworm assemblages (particularly feeding strategy), and invasion history (associated with earthworm population dynamics). The abovementioned factors may also determine invasion progress of earthworm species. The accuracy of the model could be improved by the addition of environmental modules (e.g., soil water regimes), precise parameters accounting for individual species attributes under different environmental conditions (e.g. utilization ability of different types of food resources), as well as earthworm population dynamics (size and structure) and interactions with predators and other invasive/indigenous species during the invasion progress. Such an earthworm invasion model could provide valuable evaluation of the complicated responses of carbon dynamics to earthworm invasions in a range of forest ecosystems, particularly under global change scenarios.  相似文献   
294.
Chemical ecology provides unique perspectives for managing plant/human interactions to achieve food security. Allelochemicals function as chemical defences of crop plants, enhancing yields. While ingested allelochemicals can confer health benefits to humans, at higher concentrations they are often toxic. The delicate balance between their positive and negative effects in crop plants is influenced by many factors. Some of these—how environment affects optimal levels of defence, how metabolic interactions with nutrients affect toxicity of ingested allelochemicals—are the province of chemical ecology. These biological factors, however, interact with social factors, and neither can be studied independently. Chemical ecologists must work together with social scientists to understand the overall system. Here, we illustrate such an integrative approach, analysing the interactions between people and the major tropical crop manioc, which contains cyanogenic glucosides. Polymorphism for cyanogen levels in manioc facilitates analysis of how costs and benefits of crop defences vary among social systems. We first show how people/manioc interactions diversified in this crop’s Amazonian homeland, then turn to the remarkable cultural adaptations of African farmers since manioc’s introduction 400 years ago. Finally, we evaluate new coevolutionary challenges in parts of Africa where people are still unfamiliar with a potentially dangerous crop. Current environmental and social catastrophes have restricted farmers’ options, resulting in acute problems in health of humans and ecosystems. We show that high cyanogen levels confer important agronomic advantages, but also impose costs and constraints that can only be understood when biology is coupled with analysis of social, cultural and economic factors. Detoxifying manioc technologically requires know-how, time, water and other resources. Detoxifying residual dietary cyanogens metabolically depends on being able to grow, or to buy, the nutrients required for detoxification, primarily sulphur-rich proteins. Solutions that appear adaptive today may not be in the future, as changing climate, rising atmospheric CO2 levels and decreased access to fertilizers affect productivity of crops and the nutrient and allelochemical composition of the foods they are used to produce.  相似文献   
295.
Nitrous oxide emissions from corn-soybean systems in the midwest   总被引:2,自引:0,他引:2  
Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.  相似文献   
296.
The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.  相似文献   
297.
Indonesia is home to around 45% of the world’s tropical peatlands which continue to be degraded on a large scale by deforestation, drainage and fire, contributing massively to global GHG emissions. Approaches to restoring the peat–water balance and reducing emissions in peat hydrological units, through managing them based either on full protection or large-scale commercial production, have generally failed to address environmental and local community needs. We present published and unpublished findings pointing to the need for an integrated peatland protection and restoration strategy based first on raising water levels in degraded (drained) peatlands and maintaining them in forested peatlands, thus, reducing GHG emissions. Second, the strategy incorporates ecologically sound agroforestry business models that strengthen livelihoods of smallholders and so sustain their interest in sustainably managing the peatlands. In this paper, we focus on the second element of this strategy in Indonesia. Eight agroforestry business models are proposed based on their merits to attract both smallholders and commercial investors as well as their compatibility with hydrological rehabilitation of the peatlands. While financial returns on investment will vary across sites and countries, our analysis indicates that some models can be profitable over both short and longer time periods with relatively low levels of investment risk.  相似文献   
298.
The attenuation of H2S emissions by various landfill cover materials was evaluated using both laboratory and field experiments. The results demonstrated that cover materials consisting of selected waste products (compost and yard trash) and soils amended with quicklime and calcium carbonate effectively attenuated H2S emissions and detectable H2S emissions were only encountered in a testing plot using a sandy soil cover (average emission rate was 4.67 × 10?6 mg m?2 s?1). H2S concentration profiles in the cover materials indicated that H2S was removed as it migrated through the cover materials. At the same depth in the testing area, the H2S concentration in the sandy soil field plot was always higher than that of other testing plots because the sand (a) demonstrated less ability to remove H2S and (b) exhibited a higher H2S concentration at the base of the cover. Laboratory experiments confirmed these observations, with a combination of physical adsorption, chemical reactions, and biological oxidation, accounting for the enhanced removal. In addition to removal, the results suggest that some of the cover materials reduced H2S generation by creating less favorable conditions for sulfate-reducing bacteria (e.g., high pH and temperature).  相似文献   
299.
300.
Disposal and beneficial-use options for street sweeping residuals collected as part of routine roadway maintenance activities in Florida, USA, were assessed by characterizing approximately 200 samples collected from 20 municipalities. Total concentrations (mg/kg or μg/kg) and leachable concentrations (mg/L or μg/L) of 11 metals and a number of organic pollutant groups (volatile organics, semi-volatile organics, pesticides, herbicides, carbamates) in the samples were measured. The synthetic precipitation leaching procedure (SPLP) was performed to evaluate the leachability of the pollutants. From the total metal analysis, several metals (e.g., arsenic, barium, chromium, copper, nickel, lead, and zinc) were commonly found above their detection limits. Zinc was found to have the highest mean concentration of all metals measured (46.7 mg/kg), followed by copper (10.7 mg/kg) and barium (10.5 mg/kg). The metal with the smallest mean concentration was arsenic (0.48 mg/kg). A small fraction of the total arsenic, barium, lead, and zinc leached in some samples using the SPLP; leached concentrations were relatively low. A few organic compounds (e.g., 4,4′-DDT, endrin, and endosulfan II) were detected in a limited number of samples. When the total and leaching results were compared to risk-based Florida soil cleanup target levels and groundwater cleanup target levels, the street sweepings were not found to pose a significant human-health risk via direct exposure or groundwater contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号