首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   3篇
  国内免费   4篇
安全科学   4篇
废物处理   14篇
环保管理   15篇
综合类   36篇
基础理论   29篇
污染及防治   57篇
评价与监测   22篇
社会与环境   18篇
  2023年   2篇
  2022年   12篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   21篇
  2012年   13篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   4篇
  1968年   1篇
  1961年   1篇
  1959年   1篇
  1958年   3篇
  1957年   1篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
排序方式: 共有195条查询结果,搜索用时 9 毫秒
61.
62.
Single-wall carbon nanotubes (CNT) are one of the most attractive engineered nanomaterials due to their unique electrical, mechanical and thermal properties, and potential use in a variety of commercial products. Due to their small size, CNT could become easily airborne and reach the various environmental compartments and eventually the food chain and humans. However, the environmental fate processes and health impacts of CNT are not clear. This study investigated a method for the quantitative measurement of carbon nanotube (CNT) in natural media such soil and benthic organism tissues. Fluorescence dye Nile blue was used for noncovalent labeling of CNT to enable their fluorescence detection. Labeled nanotubes were successfully detected in soil samples as well as in worm tissue. We were also able to detect the presence of labeled carbon nanotubes in worms exposed for 1 week to CNT-laden soil, which indicates CNT may transfer through environmental food web. The method allows for laboratory measurements of CNT mass transfer and partitioning into various environmental systems.  相似文献   
63.
64.
Summary A broad-spectrum mercury-resistant bacterial strain was isolated from contaminated water and was identified as Bacillus pasteurii strain DR2. It could volatilize Hg-compounds including organomercurials from its growth media. It utilized several aromatic compounds as a sole source of carbon. The bacterial strain eliminated HgCl2 from sterile river water and the presence of benzene, toluene, naphthalene and nitrobenzene at 1 mM concentration in the system increased the rate of mercury volatilization, the volatilization rate being highest with benzene. When 1.7×107 cells of this bacterial strain were added per ml of non-sterile water the bacterial strain volatilized more than 90 percent of mercury from mercuric chloride and organo-mercurials like PMA, thiomersol and methoxy ethyl mercuric chloride (MEMC). In the absence of this bacterial strain the volatilization of PMA and MEMC due to the presence of other Hg-resistant organisms in nonsterile polluted water ranged between 20–25 percent and of HgCl2 was about 40 percent. However, in the presence of B. pasteurii DR2 volatilization of these Hg-compounds from non-sterile water increased by 20–40 percent. In the presence of 1 mM benzene the rate of mercury volatilization was even higher. In all the cases the rate of volatilization was higher in the first seven days than in the next seven days.Professor A. Mandal, MSc, PhD is Head of the Department of Biochemistry at the University College of Science, 35 Ballygunge Circular Road, Calcutta 700019, to whom correspondence should be addressed. His co-workers are Dr K. Pahan, Postdoctoral Associate, Department of Cell Biology and Paediatrics, Medical University of South Carolina, USA; Dr J. Chaudhuri, Senior Lecturer, Department of Molecular Biology, BKC College, Calcutta, India; Dr D.K. Ghosh, Postdoctoral Associate, Department of Biochemistry, University College of Science, Calcutta, India; Dr R. Gachhui, Postdoctoral Associate, The Cleveland Clinic Foundation, Cleveland, USA; and Dr S. Ray, Postdoctoral Associate, The Johns Hopkins University School of Hygiene and Public Health, Department of Biochemistry, Baltimore, USA.  相似文献   
65.
66.
Arsenic (As) is a metalloid that poses serious environmental threats due to its behemoth toxicity and wide abundance. The use of arsenic-contaminated groundwater for irrigation purpose in crop fields elevates arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh and India, rice is reported to be one of the major sources of arsenic contamination. Rice is much more efficient at accumulating arsenic into the grains than other staple cereal crops. Rice is generally grown in submerged flooded condition, where arsenic bioavailability is high in soil. As arsenic species are phytotoxic, they can also affect the overall production of rice, and can reduce the economic growth of a country. Once the foodstuffs are contaminated with arsenic, this local problem can gain further significance and may become a global problem, as many food products are exported to other countries. Large-scale use of rainwater in irrigation systems, bioremediation by arsenic-resistant organisms and hyperaccumulating plants, and the aerobic cultivation of rice are some possible ways to reduce the extent of bioaccumulation in rice. Investigation on a complete food chain is urgently needed in the arsenic-contaminated zones, which should be our priority in future researches.  相似文献   
67.
Conservation and management of Sundarban mangrove forest is difficult chiefly due to inaccessibility and hostile condition. Remote sensing serves as an important tool to provide up-to date baseline information which is the primary requirement for the conservation planning of mangroves. In this study, supervised classification by maximum likelihood classifier (MLC) has been used to classify LANDSAT TM and LANDSAT ETM satellite data. This algorithm is used for computing likelihood of unknown measurement vector belonging to unknown classes based on Bayesian equation. Image spectra for various mangrove species were also generated from hyperspectral image. During field visits, GPS locations of five dominant mangrove species with appreciable distribution were taken and image spectra were generated for the same points from hyperion image. The result of this classification shows that, in 1999 total mangrove forest accounted for 55.01 % of the study area which has been reduced to 50.63 % in the year 2010. Avicennia sp. is found as most dominating species followed by Excoecaria sp. and Phoenix sp. but the aerial distribution of Avicennia sp., Bruguiera sp. and Ceriops sp. has reduced. In this classification technique the overall accuracy and Kappa value for 1999 and 2010 are 80 % and 0.77, 85.71 % and 0.81 respectively.  相似文献   
68.
In the present study, influence of talc on thermal, mechanical and rheological behavior of PLA is investigated and the structure?Cproperty correlation for the PLA/talc composites is established. Poly(lactic acid)/talc composites are prepared by melt mixing of PLA with talc in twin screw extruder followed by blown film processing. Various characterizations techniques are used to evaluate thermal, morphological, mechanical and rheological behavior of PLA/talc composites and its blown film. DSC analysis showed that degree of crystallinity of PLA/talc composites was higher than that of neat PLA because of nucleating ability of talc. Spherulite morphology of PLA/talc composites showed that talc has increased nucleation density of spherulite having smaller radius than that of neat PLA. Talc is effective in enhancing tensile modulus and storage modulus of PLA due to reinforcing ability of talc particles.  相似文献   
69.
Environmental Science and Pollution Research - Biogas is acknowledged as one of the foremost bioenergy to address the current environmental and energy challenges being faced by the world. Commonly,...  相似文献   
70.
Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0–14.2 million ton (4.2–15.0%) for wheat and 0.3–6.7 million ton (0.3–6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号