Many argue that monitoring conducted exclusively by scientists is insufficient to address ongoing environmental challenges. One solution entails the use of mobile digital devices in participatory monitoring (PM) programs. But how digital data entry affects programs with varying levels of stakeholder participation, from nonscientists collecting field data to nonscientists administering every step of a monitoring program, remains unclear. We reviewed the successes, in terms of management interventions and sustainability, of 107 monitoring programs described in the literature (hereafter programs) and compared these with case studies from our PM experiences in Australia, Canada, Ethiopia, Ghana, Greenland, and Vietnam (hereafter cases). Our literature review showed that participatory programs were less likely to use digital devices, and 2 of our 3 more participatory cases were also slow to adopt digital data entry. Programs that were participatory and used digital devices were more likely to report management actions, which was consistent with cases in Ethiopia, Greenland, and Australia. Programs engaging volunteers were more frequently reported as ongoing, but those involving digital data entry were less often sustained when data collectors were volunteers. For the Vietnamese and Canadian cases, sustainability was undermined by a mismatch in stakeholder objectives. In the Ghanaian case, complex field protocols diminished monitoring sustainability. Innovative technologies attract interest, but the foundation of effective participatory adaptive monitoring depends more on collaboratively defined questions, objectives, conceptual models, and monitoring approaches. When this foundation is built through effective partnerships, digital data entry can enable the collection of more data of higher quality. Without this foundation, or when implemented ineffectively or unnecessarily, digital data entry can be an additional expense that distracts from core monitoring objectives and undermines project sustainability. The appropriate role of digital data entry in PM likely depends more on the context in which it is used and less on the technology itself. 相似文献
Environmental Science and Pollution Research - This work proposes a novel approach for the coupling of ozonation and Fenton processes using a new prototype of a high rotation bubble reactor (HRBR),... 相似文献
Environmental Science and Pollution Research - Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the... 相似文献
Environmental Science and Pollution Research - Residential settings are of utmost importance for human exposure, as it is where people spend most of their time. Residential wood combustion is a... 相似文献
The removal of heavy metals from wastewater has become a global challenge, which demands the continuous study of efficient and low-cost treatment alternatives such as adsorption. In this research, the removal of zinc was evaluated using batch adsorption processes with nonconventional materials such as graphene oxide (GO), magnetite (MG), and their composites (GO:MG), formulated with three weight ratios (2:1, 1:1, and 1:2). Graphene was synthesized by the modified Marcano method, using pencil lead graphite as a precursor. MG and the composites were synthesized by chemical coprecipitation of ferrous sulfate and ferric chloride. The materials were characterized by Raman and Fourier transform infrared spectroscopies, scanning electron microscopy, X-ray diffraction, and the Brunauer–Emmett–Teller method to determine the functional groups, microstructural and morphological characteristics, and specific surface area. Batch adsorption tests were carried out to optimize the adsorbent dose and contact time with zinc solutions of 10 ppm. Zinc adsorption reached equilibrium at 2 h, with an optimal dose between 0.25 and 1.0 g/L. The maximum zinc removal efficiencies/adsorption capacities were 98.6%/165.6, 83.4%/47.6, 83.5%/21.9, 72.8%/19.9, and 82.2%/9.25 mg/g using GO, 2GO:1MG, 1GO:1MG, 1GO:2MG, and MG, respectively. Furthermore, the analysis of the isotherm and adsorption kinetics models determined that the adsorption processes using MG and the composites fit the Sips and pseudo-second-order models. 相似文献
Polychlorinated biphenyls (PCBs) contaminate 19% of US Superfund sites and represent a serious risk to human and environmental health. One promising strategy to remediate PCB-contaminated sediments utilizes organohalide-respiring bacteria (OHRB) that dechlorinate PCBs.
However, functional genes that act as biomarkers for PCB dechlorination processes (i.e., reductive dehalogenase genes) are poorly understood. Here, we developed anaerobic sediment microcosms that harbor an OHRB community dominated by the genus Dehalococcoides. During the 430-day microcosm incubation, Dehalococcoides 16S rRNA sequences increased two orders of magnitude to 107 copies/g of sediment, and at the same time, PCB118 decreased by as much as 70%. In addition, the OHRB community dechlorinated a range of penta- and tetra-chlorinated PCB congeners including PCBs 66, 70?+?74?+?76, 95, 90?+?101, and PCB110 without exogenous electron donor. We quantified candidate reductive dehalogenase (RDase) genes over a 430-day incubation period and found rd14, a reductive dehalogenase that belongs to Dehalococcoides mccartyi strain CG5, was enriched to 107 copies/g of sediment. At the same time, pcbA5 was enriched to only 105 copies/g of sediment. A survey for additional RDase genes revealed sequences similar to strain CG5’s rd4 and rd8. In addition to demonstrating the PCB dechlorination potential of native microbial communities in contaminated freshwater sediments, our results suggest candidate functional genes with previously unexplored potential could serve as biomarkers of PCB dechlorination processes.
The objective of this study was to impregnate the surface of palm coconut activated carbon with nanoparticles of iron compounds using Moringa oleifera leaf extracts and pomegranate leaf by a green synthesis method and to evaluate its adsorption capacity for sodium diclofenac. The adsorbent material was characterized by zeta potential, X-ray diffraction (XRD), N2 adsorption/desorption (BET method), transmission electronic microscopy (TEM), and scanning electronic microscopy (SEM) coupled to dispersive energy spectrometry X-ray (EDX) methods. To evaluate the adsorption capacity of sodium diclofenac, the influence of pH, kinetics, isotherms, and thermodynamic properties were analysed. The impregnated adsorbents showed efficiency in the adsorption of sodium diclofenac. The kinetic model that best fit the experimental data was the pseudo-second-order model, and the equilibrium model was the Langmuir model. As for the thermodynamic study, it was verified that the adsorption reaction for all adsorbents occurs in a spontaneous, favourable way, and it is endothermic by physisorption. Therefore, this process is promising because it is a clean and non-toxic method when compared with chemical methods for the synthesis of nanoparticles.
Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations
in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and
other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid
soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils
spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations
that produced 5%; 10%;, and 50%; inhibition of each of the two soil microbiological parameter studied (ecological dose, ED,
values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass
(Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher
in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase
activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15
g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and
agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between
the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil. 相似文献
This article explores recent Australian experiences in the application of the concept of integrated urban water management
(IUWM) to land development sites through the review of 15 case studies. It discusses lUWM’s emergence and comments on the
success or otherwise of Australian experience in its application. The understanding of IUWM is maturing within the Australian
water industry, an occurrence that has been facilitated by demonstration sites such as those reviewed. Successes include the
translation of IUWM concepts into well-functioning operational urban developments, significant reductions in the impact of
the urban developments on the total water cycle, and the increasing acceptance of the concept within the water and land development
industries. However, there is still room for greater integration of the water supply, stormwater, and wastewater components
of the urban water cycle, improved dissemination of knowledge, enhancement of skills in both public and private organisations,
and monitoring the performance of systems and technologies. 相似文献
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments. 相似文献