首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7275篇
  免费   59篇
  国内免费   41篇
安全科学   152篇
废物处理   328篇
环保管理   617篇
综合类   1048篇
基础理论   1510篇
环境理论   4篇
污染及防治   1844篇
评价与监测   623篇
社会与环境   1217篇
灾害及防治   32篇
  2023年   35篇
  2022年   126篇
  2021年   145篇
  2020年   68篇
  2019年   79篇
  2018年   167篇
  2017年   173篇
  2016年   216篇
  2015年   137篇
  2014年   269篇
  2013年   592篇
  2012年   283篇
  2011年   326篇
  2010年   261篇
  2009年   294篇
  2008年   340篇
  2007年   373篇
  2006年   292篇
  2005年   281篇
  2004年   258篇
  2003年   232篇
  2002年   225篇
  2001年   257篇
  2000年   202篇
  1999年   92篇
  1998年   69篇
  1997年   74篇
  1996年   64篇
  1995年   82篇
  1994年   68篇
  1993年   56篇
  1992年   57篇
  1991年   59篇
  1990年   71篇
  1989年   55篇
  1988年   42篇
  1987年   38篇
  1986年   46篇
  1985年   47篇
  1984年   51篇
  1983年   36篇
  1982年   46篇
  1981年   36篇
  1980年   44篇
  1979年   45篇
  1974年   30篇
  1973年   34篇
  1972年   39篇
  1971年   30篇
  1969年   32篇
排序方式: 共有7375条查询结果,搜索用时 2 毫秒
291.
Russian Journal of Ecology - It has been shown that the main drivers of the dynamics of cladoceran and copepod abundances can be predators (fish), the quantity and/or quality of food in terms of...  相似文献   
292.
Sand–gravel mining is a significant parameter of economic development and social welfare function in modern societies. As demand for aggregate increases in construction industry, conflicts for the availability of the resource and environmental impacts become more intense. The present paper describes the contested status quo in riverbed sand–gravel mining activities with an example from Greece, as a case study. The scope is to propose a methodology about good governance of the mining sector that promotes a sustainable sharing of aggregate resource by securing environment and safekeeping revenues in the mining trade market.  相似文献   
293.
294.
Fermentation can use renewable raw materials as substrate, which makes it a sustainable method to obtain H2. This study evaluates H2 production by a mixed culture from substrates such as glucose and derivatives from sugarcane processing (sucrose, molasses, and vinasse) combined with landfill leachate. The leachate alone was not a suitable substrate for biohydrogen production. However, leachate blended with glucose, sucrose, molasses, or vinasse increased the H2 production rate by 2.0-, 2.8-, 4.6-, and 0.5-fold, respectively, as compared with the substrates without the leachate. Determination of metals (Cu, Cd, Pb, Hg, Ni, and Fe) at the beginning and at the end of the fermentative assays showed how they were consumed during the fermentation and demonstrated improved H2 production. During fermentation, Cu, Fe, and Cd were the most consumed leachate metals. The best substrate combination to produce H2 was molasses and leachate, which gave high volumetric productivity—469 ml H2/l h. However, addition of the leachate to the substrates stimulated lactic acid formation pathways, which lowered the H2 yield. The use of leachate combined with sugarcane processing derivatives as substrates could add value to the leachate and reduce its polluting power, generating a clean energy source from renewable raw materials.  相似文献   
295.
Journal of Material Cycles and Waste Management - Several types of industrial solid waste have been used as byproducts in the construction and materials industries. Some of the applications seem to...  相似文献   
296.
This paper reports on recycling of industrial wastes (three pharmaceutical industrial sludges) into environmental friendly value-added materials. Stabilization/Solidification (S/S or bricks) process was applied to make a safer way for the utilization of pharmaceutical waste. The additives in this study include binders (cement, lime and bentonite) and strengthening material (pulverized fuel ash (PFA), silica fume and quarry dust) was used at different compositions. Bricks were cured for 28 days, and the following analysis-like compressive strength, leachability of heavy metals, mineralogical phase identity by X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermal behaviour by thermogravimetric-differential thermal analysis (TG-DTA) had done. All the bricks were observed to achieve the standard compressive strength as required for construction according to BIS standards. Metal concentration in the leachate has reached the dischargeable limits according to Brazilian standards. Results of this study demonstrate that production of bricks is a promising and achievable productive use of pharmaceutical sludge.  相似文献   
297.
Predicting the soil-to-plant transfer of metals in the context of global warming has become a major issue for food safety. It requires a better understanding of how the temperature alters the bioavailability of metals in cultivated soils. This study focuses on one agricultural soil contaminated by Cd, Zn and Pb. DGT measurements were performed at 10, 20 and 30 °C to assess how the bioavailability of metals was affected by a rise in soil temperature. A lettuce crop was cultivated in the same conditions to determine if the soil-to-plant transfer of metals increased with a rise in soil temperature. A gradual decline in Cd and Zn bioavailability was observed from 10 to 30 °C, which was attributed to more intense complexation of metals in the pore water at higher temperatures. Together with its aromaticity, the affinity of dissolved organic matter (DOM) for metals was indeed suspected to increase with soil temperature. One main output of the present work is a model which satisfactorily explains the thermal-induced changes in the characteristics of DOM reported in Cornu et al. (Geoderma 162:65–70, 2011) by assuming that the mineralization of initial aliphatic compounds followed a first-order reaction, increased with soil temperature according to the Arrhenius law, and due to a priming effect, led to the appearance of aromatic molecules. The soil-to-plant transfer of Cd and Zn was promoted at higher soil temperatures despite a parallel decrease in Cd and Zn bioavailability. This suggests that plant processes affect the soil-to-plant transfer of Cd and Zn the most when the soil temperature rises.  相似文献   
298.
Demand for green energy production is arising all over the world. A lot of emphasis is laid in making the buildings green. Even a small amount of energy savings made contribute to saving the environment. In this study, an idea is proposed and studied to extract power from the high head water in the pipelines of a building. A building of height 15 m is considered for this study. Water flowing in the pipe has sufficient energy to run a micro hydro turbine. The feasibility of producing electrical energy from the energy of pipe water is found. The motivation is to find the feasibility of generating power using a low-cost turbine. The experimental setup consists of micro turbine of 135 mm diameter coupled to a 12-V DC generator; LEDs and resistors are employed to validate the results. The theoretical calculations were presented using the fundamental equations of fluid mechanics. The theoretical results are validated using experimental and numerical results using CFD simulation. In addition, exergy analysis has been carried out to quantify the irreversibilities during the process in the system.  相似文献   
299.
Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world.  相似文献   
300.
The chloroform is a substance that presents a significant risk to or via the aquatic environment. Thus, the emissions, discharges and losses of this substance need to be controlled during wastewater disinfection for reclamation and reuse purposes. Due to its carcinogenetic potential, multiple studies have been carried out on drinking and surface/natural waters but less consideration has been directed to the wastewater disinfection. The focus of this work studied the formation of chloroform during chlorination in prepared waters or artificial matrices that intended to simulate wastewaters stored in landscape ponds for green areas irrigation. The relation between reaction time, chlorine dose, and chloroform formation and the variation of the dissolved organic carbon (DOC) content during the reaction was assessed. A two-variant model was proposed to simulate breakpoint chlorination practices (when chlorine dose is equal or lower than chlorine demand) and super chlorination techniques (when chlorine dose tends to surpass chlorine demand). The model was validated by the application of actual data from working conditions of six wastewater treatment plants located in Algarve, Portugal, including other data obtained in previous research studies that were not used in the model development, and by comparing the predicted values with real measured ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号