首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12474篇
  免费   544篇
  国内免费   1951篇
安全科学   619篇
废物处理   551篇
环保管理   1022篇
综合类   4669篇
基础理论   2322篇
环境理论   4篇
污染及防治   3089篇
评价与监测   906篇
社会与环境   1563篇
灾害及防治   224篇
  2023年   154篇
  2022年   442篇
  2021年   439篇
  2020年   393篇
  2019年   340篇
  2018年   393篇
  2017年   464篇
  2016年   493篇
  2015年   493篇
  2014年   679篇
  2013年   1076篇
  2012年   734篇
  2011年   773篇
  2010年   614篇
  2009年   644篇
  2008年   729篇
  2007年   642篇
  2006年   594篇
  2005年   478篇
  2004年   425篇
  2003年   423篇
  2002年   396篇
  2001年   396篇
  2000年   362篇
  1999年   194篇
  1998年   174篇
  1997年   153篇
  1996年   132篇
  1995年   128篇
  1994年   117篇
  1993年   101篇
  1992年   93篇
  1991年   79篇
  1990年   88篇
  1989年   66篇
  1988年   54篇
  1987年   38篇
  1986年   53篇
  1985年   47篇
  1984年   55篇
  1983年   37篇
  1982年   53篇
  1981年   38篇
  1980年   44篇
  1979年   45篇
  1978年   32篇
  1973年   34篇
  1972年   42篇
  1971年   32篇
  1969年   31篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
591.
采用溶胶-凝胶法制备了Mn掺杂钙钛矿型催化剂LaFexMn1-xO3,并以其为催化剂催化湿式双氧水氧化处理煤气化废水纳滤浓缩液。采用XRD,SEM,FTIR技术对催化剂进行了表征。表征结果显示:制备的催化剂均具有标准的钙钛矿型结构,其中,LaFe0.9Mn0.1O3的结构稳定,比表面积大。实验结果表明:制备的催化剂中LaFe0.9Mn0.1O3的催化活性最高,且稳定性好,连续使用5次后催化活性未见明显减弱;在H2O2投加量3.0 g/L、n(H2O2)∶n(LaFe0.9Mn0.1O3)=12∶1、反应温度160 ℃、反应压力1 MPa、浓缩液pH 3、反应时间60 min的最优条件下,COD、UV254和TOC的去除率分别达到80.9%、95.2%和68.0%,BOD5/COD由0.02提升至0.40,可生化性大幅提高。  相似文献   
592.
利用折流式超重力床将氨废水处理的精馏和吸收过程集成在一台设备中,开发出一种设备小型化、流程紧凑的氨废水资源化利用集成技术。与传统技术相比,该技术在大幅节省占地面积和空间的同时,还可大幅节约设备建设所用钢材。工业规模试验结果表明,不同浓度的氨废水经该技术处理后可转化为氨质量分数大于22%的氨水资源,处理出水中氨氮质量浓度低于8.2 mg/L,尾气中未检测到氨,处理结果优于GB 31573—2015《无机化学工业污染物排放标准》。  相似文献   
593.
Journal of Material Cycles and Waste Management - Several types of industrial solid waste have been used as byproducts in the construction and materials industries. Some of the applications seem to...  相似文献   
594.
Liquid hot water (LHW), an environmental-friendly physico-chemical treatment, was applied to pretreat the sugarcane bagasse (SCB). Tween80, a non-ionic surfactant, was used to enhance the enzymatic hydrolysis of the pretreated SCB. It found that 0.125 mL Tween80 /g dry matter could make the maximum increase (33.2%) of the glycan conversion of the LHW-pretreated SCB. A self-designed laboratory facility with a plate-and-frame impeller was applied to conduct batch hydrolysis, fed-batch hydrolysis, and the process of high-temperature (50°C) fed-batch hydrolysis following low-temperature (30°C) simultaneous saccharification and fermentation (SSF) which was adopted to overcome the incompatible optimum temperature of saccharification and fermentation in the SSF process. After hydrolyzing LHW-pretreated SCB for 120 h with commercial cellulase, the total sugar concentration and glycan conversion obtained from fed-batch hydrolysis were 91.6 g/L and 68.3%, respectively, which were 9.7 g/L and 7.3% higher than those obtained from batch hydrolysis. With Saccharomyces cerevisiae Y2034 fermenting under the non-sterile condition, the ethanol production and theoretical yield obtained from the process of SSF after fed-batch hydrolysis were 55.4 g/L and 88.3% for 72h, respectively, which were 15.5 g/L and 24.7% higher than those from separate fed-batch hydrolysis and fermentation. The result of this work was superior to the reported results obtained from the LHW-pretreated SCB.  相似文献   
595.
This paper reports on recycling of industrial wastes (three pharmaceutical industrial sludges) into environmental friendly value-added materials. Stabilization/Solidification (S/S or bricks) process was applied to make a safer way for the utilization of pharmaceutical waste. The additives in this study include binders (cement, lime and bentonite) and strengthening material (pulverized fuel ash (PFA), silica fume and quarry dust) was used at different compositions. Bricks were cured for 28 days, and the following analysis-like compressive strength, leachability of heavy metals, mineralogical phase identity by X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermal behaviour by thermogravimetric-differential thermal analysis (TG-DTA) had done. All the bricks were observed to achieve the standard compressive strength as required for construction according to BIS standards. Metal concentration in the leachate has reached the dischargeable limits according to Brazilian standards. Results of this study demonstrate that production of bricks is a promising and achievable productive use of pharmaceutical sludge.  相似文献   
596.
Predicting the soil-to-plant transfer of metals in the context of global warming has become a major issue for food safety. It requires a better understanding of how the temperature alters the bioavailability of metals in cultivated soils. This study focuses on one agricultural soil contaminated by Cd, Zn and Pb. DGT measurements were performed at 10, 20 and 30 °C to assess how the bioavailability of metals was affected by a rise in soil temperature. A lettuce crop was cultivated in the same conditions to determine if the soil-to-plant transfer of metals increased with a rise in soil temperature. A gradual decline in Cd and Zn bioavailability was observed from 10 to 30 °C, which was attributed to more intense complexation of metals in the pore water at higher temperatures. Together with its aromaticity, the affinity of dissolved organic matter (DOM) for metals was indeed suspected to increase with soil temperature. One main output of the present work is a model which satisfactorily explains the thermal-induced changes in the characteristics of DOM reported in Cornu et al. (Geoderma 162:65–70, 2011) by assuming that the mineralization of initial aliphatic compounds followed a first-order reaction, increased with soil temperature according to the Arrhenius law, and due to a priming effect, led to the appearance of aromatic molecules. The soil-to-plant transfer of Cd and Zn was promoted at higher soil temperatures despite a parallel decrease in Cd and Zn bioavailability. This suggests that plant processes affect the soil-to-plant transfer of Cd and Zn the most when the soil temperature rises.  相似文献   
597.
Demand for green energy production is arising all over the world. A lot of emphasis is laid in making the buildings green. Even a small amount of energy savings made contribute to saving the environment. In this study, an idea is proposed and studied to extract power from the high head water in the pipelines of a building. A building of height 15 m is considered for this study. Water flowing in the pipe has sufficient energy to run a micro hydro turbine. The feasibility of producing electrical energy from the energy of pipe water is found. The motivation is to find the feasibility of generating power using a low-cost turbine. The experimental setup consists of micro turbine of 135 mm diameter coupled to a 12-V DC generator; LEDs and resistors are employed to validate the results. The theoretical calculations were presented using the fundamental equations of fluid mechanics. The theoretical results are validated using experimental and numerical results using CFD simulation. In addition, exergy analysis has been carried out to quantify the irreversibilities during the process in the system.  相似文献   
598.
599.
600.
Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号