首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2349篇
  免费   18篇
  国内免费   20篇
安全科学   64篇
废物处理   100篇
环保管理   253篇
综合类   890篇
基础理论   370篇
环境理论   2篇
污染及防治   473篇
评价与监测   136篇
社会与环境   92篇
灾害及防治   7篇
  2022年   27篇
  2021年   32篇
  2020年   21篇
  2019年   23篇
  2018年   41篇
  2017年   42篇
  2016年   35篇
  2015年   39篇
  2014年   52篇
  2013年   98篇
  2012年   93篇
  2011年   104篇
  2010年   70篇
  2009年   91篇
  2008年   79篇
  2007年   102篇
  2006年   76篇
  2005年   83篇
  2004年   90篇
  2003年   73篇
  2002年   69篇
  2001年   42篇
  2000年   28篇
  1999年   21篇
  1998年   33篇
  1997年   17篇
  1996年   22篇
  1995年   32篇
  1994年   24篇
  1993年   16篇
  1992年   20篇
  1990年   21篇
  1989年   15篇
  1984年   15篇
  1983年   14篇
  1965年   17篇
  1964年   15篇
  1963年   25篇
  1962年   18篇
  1961年   14篇
  1960年   23篇
  1959年   24篇
  1958年   16篇
  1957年   16篇
  1956年   14篇
  1955年   28篇
  1954年   33篇
  1953年   19篇
  1952年   14篇
  1951年   24篇
排序方式: 共有2387条查询结果,搜索用时 31 毫秒
951.
Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC50 value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC50 = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM.Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation.  相似文献   
952.
Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result, there is a need to characterize contaminant effects on site biota. Within this framework, the main purpose of our study was to evaluate radionuclide concentrations in bird tissue, obtained from the Hanford Environmental Information System (HEIS). The database was sorted by avian group (water bird vs. upland bird), radionuclide (over 20 analytes), tissue (muscle, bone, liver), location (onsite vs. offsite), and time period (1971-1990 vs. 1991-2009). Onsite median concentrations in water birds were significantly higher (Bonferroni P < 0.05) than those in onsite upland birds for Cs-137 in muscle (1971-1990) and Sr-90 in bone (1991-2009), perhaps due to behavioral, habitat, or trophic species differences. Onsite median concentrations in water birds were higher (borderline significance with Bonferroni P = 0.05) than those in offsite birds for Cs-137 in muscle (1971-1990). Onsite median concentrations in the earlier time period were significantly higher (Bonferroni P < 0.05) than those in the later time period for Co-60, Cs-137, Eu-152, and Sr-90 in water bird muscle and for Cs-137 in upland bird muscle tissue. Median concentrations of Sr-90 in bone were significantly higher (Bonferroni P < 0.05) than those in muscle for both avian groups and both locations. Over the time period, 1971-2009, onsite median internal dose was estimated for each radionuclide in water bird and upland bird tissues. However, a meaningful dose comparison between bird groups was not possible, due to a dissimilar radionuclide inventory, mismatch of time periods for input radionuclides, and lack of an external dose estimate. Despite these limitations, our results contribute toward ongoing efforts to characterize ecological risk at the Hanford Site.  相似文献   
953.
Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996–2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.  相似文献   
954.
The Anthropocene: From Global Change to Planetary Stewardship   总被引:3,自引:0,他引:3  
Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet's capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geoengineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.  相似文献   
955.
Little is known about the microbial communities carried in wind-eroded sediments from various soil types and land management systems. The novel technique of pyrosequencing promises to expand our understanding of the microbial diversity of soils and eroded sediments because it can sequence 10 to 100 times more DNA fragments than previous techniques, providing enhanced exploration into what microbes are being lost from soil due to wind erosion. Our study evaluated the bacterial diversity of two types of wind-eroded sediments collected from three different organic-rich soils in Michigan using a portable field wind tunnel. The wind-eroded sediments evaluated were a coarse sized fraction with 66% of particles >106 μm (coarse eroded sediment) and a finer eroded sediment with 72% of particles <106 μm. Our findings suggested that (i) bacteria carried in the coarser sediment and fine dust were effective fingerprints of the source soil, although their distribution may vary depending on the soil characteristics because certain bacteria may be more protected in soil surfaces than others; (ii) coarser wind-eroded sediment showed higher bacterial diversity than fine dust in two of the three soils evaluated; and (iii) certain bacteria were more predominant in fine dust (, , and ) than coarse sediment ( and ), revealing different locations and niches of bacteria in soil, which, depending on wind erosion processes, can have important implications on the soil sustainability and functioning. Infrared spectroscopy showed that wind erosion preferentially removes particular kinds of C from the soil that are lost via fine dust. Our study shows that eroded sediments remove the active labile organic soil particulates containing key microorganisms involved in soil biogeochemical processes, which can have a negative impact on the quality and functioning of the source soil.  相似文献   
956.
Management efforts to control excess algal growth in the Neuse River and Estuary, North Carolina began in the 1980s, with an initial focus on phosphorus (P) input reduction. However, continued water quality problems in the 1990s led to development of a Total Maximum Daily Load (TMDL) for nitrogen (N) in 1999 to improve conditions in N-sensitive estuarine waters. Evaluation of the effectiveness of management actions implemented in the Neuse River basin is a challenging endeavor due to natural variations in N export associated with climate. A simplified approach is presented that allows evaluation of trends in flow-normalized nutrient loading to provide feedback on effectiveness of implemented actions to reduce N loading to estuarine waters. The approach is applied to five watershed locations, including the headwaters of the Neuse Estuary. Decreases in nitrate + nitrite (NO3–N) concentrations occurred throughout the basin and were largest just downstream of the Raleigh metropolitan area. Conversely, concentrations of total Kjeldahl N (TKN) increased at many stations, particularly under high flow conditions. This indicates a relative increase in organic N (Org-N) inputs since the mid-1990s. Overall, patterns in different N fractions at watershed stations indicate both partial success in reducing N inputs and ongoing challenges for N loading under high flow conditions. In downstream waters, NO3–N concentrations decreased concurrent with TMDL implementation in the upper portion of the estuary but not in the middle and lower reaches. The lack of progress in the middle and lower reaches of the estuary may, at least in part, be affected by remineralization of settled particle-bound N deposited under high river flows.  相似文献   
957.
Elk (Cervus elaphus) are known to shift habitat use in response to environmental modifications, including those associated with various forms of energy development. The specific behavioral responses underlying these trends, however, have not been effectively studied. To investigate such effects, we examined elk response to habitat alteration near natural gas wells in Las Animas County, Colorado, USA in 2008–2010. We created 10 1-ha openings in forests adjacent to 10 operating natural gas wells by removing standing timber in 2008, with concomitant establishment of 10 1-ha control sites adjacent to the same wells. On each site, we estimated elk use, indexed by pellet density, before and after timber removal. Concurrently, we measured plant production and cover, nutritional quality, species composition and biomass removed by elk and other large herbivores. Species richness and diversity, graminoid and forb cover, and graminoid and forb biomass increased on cut sites following tree removal. Differences were greater in 2010 than in 2009, and elk and deer removed more plant biomass in 2010 than 2009. Elk use of cut sites was 37?% lower than control sites in 2009, but 46?% higher in 2010. The initially lower use of cut sites may be attributable to lack of winter forage on these sites caused by timber removal and associated surface modification. The increased use of cut sites in 2010 suggested that elk possessed the behavioral capacity, over time, to exploit enhanced forage resources in the proximity of habitat modifications and human activity associated with maintenance of operating natural gas wells.  相似文献   
958.
A simplified method is used to assess the microbial activity of subsoils and soils across a broad geographic scale. Acetate was selected because it is a major intermediate in catabolic biochemical pathways. In order to get minimal disturbance, only a small amount of tritium labelled acetate and water is added to the subsoil material. After an incubation time, the subsoil material is separated from the water by centrifugation and the formed tritium labelled water is separated from the remaining acetate by evaporation. The data of 128 locations in the Netherlands were plotted in a soil map and were also compared with the depth, dry weight, electric conductivity, pH and nitrate concentration. The peat areas consisted of limed meadows with a high groundwater level whereas the sand areas often showed deeper groundwater levels and a lower pH. The subsoils at the groundwater table of the peat areas, which are in contact with soil air, showed a higher mineralization rate compared with the surface soils in our study. In contrast, the mineralization rate of the subsoil at the groundwater table of sandy soils showed on average a factor 30 lower rate. Nevertheless, the self purification capacity of the subsoil can be vital under weather conditions where the surface soil becomes less active.  相似文献   
959.
Literature data for anion diffusion in compacted swelling clays contain systematic inconsistencies when the results of through-diffusion tests are compared with those of out-diffusion or tracer profile analysis. In the present work we investigated whether these inconsistencies can be explained by taking into account heterogeneities in the compacted samples; in particular increased porosities at the clay boundaries. Based on the combined results of out-diffusion, tracer profile analysis and the spatial distribution of the electrolyte anion in the clay, we conclude that the inconsistencies can indeed be resolved by taking into account a heterogeneous distribution of the total and the anion-accessible porosity. This, by definition, leads to a position dependence of the effective diffusion coefficient. Neglecting these effects results in a rather subordinate systematic error in the determination of effective diffusion coefficients of anions from through-diffusion tests with clay thicknesses in the centimetre range. However, stronger errors in terms of absolute values and conceptual interpretation may be introduced in out-diffusion tests and profile analyses of the diffused tracer. We recommend that anion diffusion tests should be accompanied by measurements of the total and anion-accessible porosity as a function of position in the direction of diffusion.  相似文献   
960.
Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号