首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18338篇
  免费   142篇
  国内免费   111篇
安全科学   360篇
废物处理   626篇
环保管理   2659篇
综合类   3759篇
基础理论   4959篇
环境理论   6篇
污染及防治   3905篇
评价与监测   982篇
社会与环境   1270篇
灾害及防治   65篇
  2018年   693篇
  2017年   666篇
  2016年   626篇
  2015年   207篇
  2014年   206篇
  2013年   959篇
  2012年   520篇
  2011年   1151篇
  2010年   732篇
  2009年   853篇
  2008年   1029篇
  2007年   1320篇
  2006年   435篇
  2005年   416篇
  2004年   372篇
  2003年   479篇
  2002年   450篇
  2001年   479篇
  2000年   333篇
  1999年   221篇
  1998年   175篇
  1997年   146篇
  1996年   179篇
  1995年   177篇
  1994年   201篇
  1993年   180篇
  1992年   183篇
  1991年   181篇
  1990年   208篇
  1989年   194篇
  1988年   166篇
  1987年   163篇
  1986年   148篇
  1985年   165篇
  1984年   158篇
  1983年   162篇
  1982年   160篇
  1981年   163篇
  1980年   149篇
  1979年   145篇
  1978年   142篇
  1977年   129篇
  1976年   136篇
  1975年   114篇
  1974年   142篇
  1973年   125篇
  1972年   125篇
  1971年   105篇
  1970年   106篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
691.
This paper considers the evolution of attempts to control and manage air pollution, principally but not exclusively focussing upon the challenge of managing air pollution in urban environments. The development and implementation of a range of air pollution control measures are considered. Initially the measures implemented primarily addressed point sources, a small number of fuel types and a limited number of pollutants. The adequacy of such a source-control approach is assessed within the context of a changing and challenging air pollution climate. An assessment of air quality management in the United Kingdom over a 50-year timeframe exemplifies the range of issues and challenges in contemporary air quality management. The need for new approaches is explored and the development and implementation of an effects-based, risk management system for air quality regulation is evaluated.  相似文献   
692.
Knowledge on atmospheric abundance of peroxyacetyl nitrate (PAN) is important in assessing the severity of photochemical pollution, and for understanding chemical transformation of reactive odd nitrogen and its impact on the budget of tropospheric ozone (O3). In summer 2006, continuous measurements of PAN were made using an automatic GC–ECD analyzer with an on-line calibrator at a suburban site of Lanzhou (LZ) and a remote site of Mt. Waliguan (WLG) in western China, with concurrent measurements of O3, total reactive nitrogen (NOy) and carbon monoxide (CO). At LZ, several photochemical episodes were observed during the study, and the average mixing ratio of PAN (plus or minus standard deviation) was 0.76 (±0.89) ppbv with the maximum value of 9.13 ppbv, compared to an average value of 0.44 (±0.16) ppbv at remote WLG. The PAN mixing ratios in LZ exhibited strong diurnal variations with a maximum at noon, while enhanced concentrations of PAN were observed in the evening and a minimum in the afternoon at WLG. The daily O3 and PAN concentration maxima showed a strong correlation (r2 = 0.91) in LZ, with a regression slope (PAN/O3) of 0.091 ppbv ppbv?1. At WLG, six well-identified pollution plumes (lasting 2–8 h) were observed with elevated concentrations of PAN (and other trace gases), and analysis of backward particle release simulation shows that the high-PAN events at WLG were mostly associated with the transport of air masses that had passed over LZ.  相似文献   
693.
Little information is known about the behaviour of ultrafine particles (UFP) on a citywide scale. Total particle number flux, dominated by UFP, and other meteorological parameters were collected from tower sites in Manchester, London, Edinburgh and Gothenburg between 1999 and 2006 using the eddy covariance technique. Averaged diurnal cycles were produced for particle number flux, concentration, sensible heat flux, emission velocity, friction velocity, wind speed and temperature. UFP flux cycles showed clear diurnal trends which were linked to traffic activity and local sources. Wind sector analysis showed contributions to flux from local heavily urbanised areas. A simple parameterised model linking UFP flux to traffic activity, sensible heat and friction velocity above the city was produced.  相似文献   
694.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   
695.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   
696.
During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s?1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm?3), corresponding surface area (142 μm2 cm?3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s?1), mean number concentrations were higher (>6000 cm?3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.  相似文献   
697.
The average particle number concentration kerbside at a busy street in Copenhagen has been reduced by 27% from the period 2002–2004 to the period 2005–2007. The reduction is in the ultrafine particle range (<100 nm). Strong evidence indicates that a significant part of the reduction, especially in the size range <30 nm, is due to the transition to sulphur-free (<10 ppm) diesel fuel and petrol in Denmark at New Year 2005.  相似文献   
698.
In this second of two companion papers, we quantify for the first time the global impact on premature mortality of the inter-continental transport of fine aerosols (including sulfate, black carbon, organic carbon, and mineral dust) using the global modeling results of (Liu et al., 2009). Our objective is to estimate the number of premature mortalities in each of ten selected continental regions resulting from fine aerosols transported from foreign regions in approximately year 2000. Our simulated annual mean population-weighted (P-W) concentrations of total PM2.5 (aerosols with diameter less than 2.5 μm) are highest in East Asia (EA, 30 μg m?3) and lowest in Australia (3.6 μg m?3). Dust is the dominant component of PM2.5 transported between continents. We estimate global annual premature mortalities (for adults age 30 and up) due to inter-continental transport of PM2.5 to be nearly 380 thousand (K) in 2000. Approximately half of these deaths occur in the Indian subcontinent (IN), mostly due to aerosols transported from Africa and the Middle East (ME). Approximately 90K deaths globally are associated with exposure to foreign (i.e., originating outside a receptor region) non-dust PM2.5. More than half of the premature mortalities associated with foreign non-dust aerosols are due to aerosols originating from Europe (20K), ME (18K) and EA (15K); and nearly 60% of the 90K deaths occur in EA (21K), IN (19K) and Southeast Asia (16K). The lower and higher bounds of our estimated 95% confidence interval (considering uncertainties from the concentration–response relationship and simulated aerosol concentrations) are 18% and 240% of the estimated deaths, respectively, and could be larger if additional uncertainties were quantified. We find that in 2000 nearly 6.6K premature deaths in North America (NA) were associated with foreign PM2.5 exposure (5.5K from dust PM2.5). NA is least impacted by foreign PM2.5 compared to receptors on the Eurasian continent. However, the number of premature mortalities associated with foreign aerosols in NA (mostly occurring in the U.S.) is comparable to the reduction in premature mortalities expected to result from tightening the U.S. 8-h O3 standard from 0.08 ppmv to 0.075 ppmv. International efforts to reduce inter-continental transport of fine aerosol pollution would substantially benefit public health on the Eurasian continent and would also benefit public health in the United States.  相似文献   
699.
The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh   总被引:1,自引:0,他引:1  
There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.  相似文献   
700.
Prediction of the Fate and Transport Processes of Atrazine in a Reservoir   总被引:1,自引:0,他引:1  
The fate and transport processes of a toxic chemical such as atrazine, an herbicide, in a reservoir are significantly influenced by hydrodynamic regimes of the reservoir. The two-dimensional (2D) laterally-integrated hydrodynamics and mass transport model, CE-QUAL-W2, was enhanced by incorporating a submodel for toxic contaminants and applied to Saylorville Reservoir, Iowa. The submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The simulation results from the enhanced 2D reservoir model were validated by measured temperatures and atrazine concentrations in the reservoir. Although a strong thermal stratification was not identified from both observed and predicted water temperatures, the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the results showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A good agreement between predicted and observed times and magnitudes of peak concentrations was obtained. The use of time-variable decay rates of atrazine led to more accurate prediction of atrazine concentrations, while the use of a constant half-life (60 days) over the entire period resulted in a 40% overestimation of peak concentrations. The results provide a better understanding of the fate and transport of atrazine in the reservoir and information useful in the development of reservoir operation strategies with respect to timing, amount, and depth of withdrawal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号