In order to better understand the behavior of 210Pb deposition in Far East Asia, comprehensive data of monthly 210Pb deposition, which includes several time-series and spatial distribution data at 14 stations in Japan and 2 stations in Taiwan, were analyzed. Pb-210 deposition at most of the sites exhibited a typical seasonal change with higher values in winter and lower values in summer; especially, the greatest 210Pb deposition in the world occurred in winter at sites beside the Japan Sea. The deposition behavior of 210Pb in Far East Asia differed between winter and summer. The meteorological phenomenon peculiar to winter of the Japan Sea side, i.e., formation of the Japan Sea convergence zone, might cause the high 210Pb concentration in rainwater, as may heavy snowfall. The 210Pb concentration in rainwater showed long-term variability, although this differed between winter and summer. This long-term variability may be related to climatological factors such as El Niño. 相似文献
The free enzyme extracted from WZ-I,which was identified as Fusarium LK.ex Fx,could effectively degrade chlorpyrifos,an organophosphate insecticide.The methods of immobilizing this free enzyme and determined its degradation-related characteristics were investigated.The properties of the immobilized enzyme were compared with those of the free enzyme.The optimal immobilization of the enzyme was achieved in a solution of 30 g/L sodium alginate at 4°C for 4-12 hr.The immobilized enzyme showed the maximal activity at pH 8.0,45°C.The maximum initial rate and the substrate concentration of the immobilized enzyme were less than that of the free enzyme.The immobilized enzyme,therefore,had a higher capacity to withstand a broader range of temperatures and pH conditions than the free enzyme.With varying pH and temperatures,the immobilized enzyme was more active than the free enzyme in the degradation reaction.In addition,the immobilized enzyme exhibited only a slight loss in its initial activity,even after three repeated uses.The results showed that the immobilized enzyme was more resistant to different environmental conditions,suggesting that it was viable for future practical use. 相似文献
Environmental Science and Pollution Research - Life cycle assessment (LCA) is widely used to quantify the environmental performance of buildings. Recently, the potential temporal variations in the... 相似文献
Environmental Science and Pollution Research - In this paper, Delphi method was used to evaluate the low-carbon technologies and measures for high agricultural carbon productivity in Taihu Lake... 相似文献
Diabetes is a common metabolic disease, which might influence susceptibility of the kidney to arsenic toxicity. However, relative report is limited. In this study, we compared the influence of inorganic arsenic (iAs) on renal oxidative damage and urinary metabolic profiles of normal and diabetic mice. Results showed that iAs exposure increased renal lipid peroxidation in diabetic mice and oxidative DNA damage in normal mice, meaning different effects of iAs exposure on normal and diabetic individuals. Nuclear magnetic resonance (NMR)-based metabolome analyses found that diabetes significantly changed urinary metabolic profiles of mice. Oxidative stress-related metabolites, such as arginine, glutamine, methionine, and β-hydroxybutyrate, were found to be changed in diabetic mice. The iAs exposure altered amino acid metabolism, lipid metabolism, carbohydrate metabolism, and energy metabolism in normal and diabetic mice, but had higher influence on metabolic profiles of diabetic mice than normal mice, especially for oxidative stress-related metabolites and metabolisms. Above results indicate that diabetes increased susceptibility to iAs exposure. This study provides basic information on differential toxicity of iAs on renal toxicity and urinary metabolic profiles in normal and diabetic mice and suggests that diabetic individuals should be considered as susceptible population in toxicity assessment of arsenic. 相似文献
Vibrio bacteria live in both marine and freshwater habitats and are associated with aquatic animals. Vibrio vulnificus is a pathogenic bacterium that infects people and livestock. It is usually found in offshore waters or within fish and shellfish. This study presents a comparative proteomic analysis of the outer membrane protein (OMP) changes in V. vulnificus proteins after stimulation with sewage from sewage drains. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots with significant differences in abundance were identified and characterized. These identified proteins were found to be involved in various functional categories, including catalysis, transport, membrane proteins progresses, receptor activity, energy metabolism, cytokine activity, and protein metabolism. The mRNA expression levels of 12 differential proteins were further assessed by qRT-PCR. Seven genes including carboxypeptidase, hemoglobin receptor, succinate dehydrogenase iron-sulfur subunit, ATP synthase subunit alpha, thioredoxin, succinyl-CoA synthetase subunit, and alanine dehydrogenase were downregulated upon stimulation, whereas the protein expression levels HupA receptor, type I secretion outer membrane protein, glutamine synthetase, superoxide dismutase, OmpU, and VuuA were upregulated. 1H NMR spectra showed 18 dysregulated metabolites from V. vulnificus after the sewage stimulation and the pathogenicity was enhanced after that.
Six sediment cores were collected from Green Bay, Wisconsin, in order to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) by a chemical mass balance (CMB) model. The cores which were obtained in 1995 had total PAH concentrations between 8.04 and 0.460 ppm. 210Pb and 137Cs dating was used to determine historical trends of PAH inputs, and elemental carbon particle analysis was done to characterize particles from combustion of coal, wood and petroleum. The results show that coke burning, highway dust, and wood burning are likely sources of PAHs to Green Bay. The contribution of coke oven emissions (CB) for the Green Bay cores is in the range of 5 to 90%. The overall highway dust (HWY) contribution is between 5 and 70%. There is a maximum (approximately 67%) contribution of HWY around 1988 which is in agreement with the historical US petroleum consumption. The wood burning (WB) contribution is between 1 to 30%, except in core GB-A where a maximum (approximately 50%) is found around 1994. The average relative errors of measurement for x2 equal to the number of degrees of freedom, are 52.5, 56.2, 36.2, 52.3, and 42.8 (df = 3) for the Green Bay cores A, B, C, E, and F, respectively. The sums of the contribution factors are less than one, indicating gain of inert biological or other bulk material between source and receptor. The results of carbon particles for Green Bay core D show that coal, oil, and wood burning are consistent with the CMB modeling results. 相似文献
Biochar produced from rice straw at 400 °C (RS400) was prepared to determine its alleviating effect on Cd phytotoxicity to wheat seedlings under different cultivation temperatures and pH. A hydroponic system (pH 4.3) and a loam soil slurry system were designed to respectively simulate acidic and neutral soil condition, and cultivation at increasing temperatures (20, 25, and 30 °C) were performed to evaluate the greenhouse effect. The root and shoot elongation and the Cd concentration in root and solution were measured; furthermore, batch experiments for Cd adsorption were undertaken. An increasing inhibition of the root by Cd addition was observed at increasing temperatures. The inhibition rate was 50.50 and 20.80% in hydroponic system and slurry system at 25 °C, respectively; however, the corresponding inhibition rates of root were significantly decreased to 25.5 and 3.5% with addition of RS400. This is mainly attributed to the reduction of Cd migration into the roots by RS400, which decreased Cd bioavailability. The mechanism behind the reduced Cd bioavailability is attributed to the Cd adsorption and the strong buffering capacity of acidity by RS400. Therefore, biochar could be a potential amendment for the remediation of Cd-contaminated soil even at increasing culturing temperatures.