首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12473篇
  免费   486篇
  国内免费   4786篇
安全科学   827篇
废物处理   806篇
环保管理   931篇
综合类   6904篇
基础理论   2071篇
环境理论   6篇
污染及防治   4722篇
评价与监测   468篇
社会与环境   440篇
灾害及防治   570篇
  2024年   3篇
  2023年   198篇
  2022年   580篇
  2021年   481篇
  2020年   356篇
  2019年   361篇
  2018年   485篇
  2017年   567篇
  2016年   644篇
  2015年   850篇
  2014年   981篇
  2013年   1279篇
  2012年   1028篇
  2011年   1201篇
  2010年   861篇
  2009年   855篇
  2008年   894篇
  2007年   700篇
  2006年   663篇
  2005年   482篇
  2004年   354篇
  2003年   442篇
  2002年   386篇
  2001年   317篇
  2000年   354篇
  1999年   411篇
  1998年   341篇
  1997年   322篇
  1996年   296篇
  1995年   260篇
  1994年   178篇
  1993年   156篇
  1992年   113篇
  1991年   97篇
  1990年   65篇
  1989年   54篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
231.
Environmental Science and Pollution Research - In an effort to control dust pollution in open-air environments such as pit coal mines and coal transportation systems, a new dust suppressant with a...  相似文献   
232.
Environmental Science and Pollution Research - Economies that depend on natural resources can experience a resource drag effect when economic growth is limited by constraints on the availability of...  相似文献   
233.
Environmental Science and Pollution Research - Microbial sulfate reduction, a vital mechanism for microorganisms living in anaerobic, sulfate-rich environments, is an essential aspect of the sulfur...  相似文献   
234.
Environmental Science and Pollution Research - Sustainable Development Goal (SDG-7) stipulates the need for clean energy, reduced carbon dioxide emissions, prevention of environmental...  相似文献   
235.

Porous carbon is an excellent absorbent for pollutants in water. Here, we report a breakthrough in performance of porous carbon based on lignin prepared using sodium lignosulfonate (SLS), potassium carbonate and melamine as precursor, activator and nitrogen source, respectively. A series of characterization tests confirmed that in-situ nitrogen doping greatly enhanced porous structure, resulting in a specific surface area of 2567.9 m2 g?1 and total pore volume of 1.499 cm3 g?1, which is nearly twice that of non-nitrogen-doped porous carbon. Moreover, adsorption experiments revealed that at 303 K, the saturated adsorption capacity of chloramphenicol was as high as 713.7 mg g?1, corresponding to an improvement of 33.7%. Further, the prepared porous carbon exhibited a strong anti-interference against metal ions and humic acid. The adsorption process was confirmed to be an endothermic reaction dominated by physical adsorption, indicating that an increase in temperature is conducive to adsorption. The results of this study show that nitrogen-doped lignin-based porous carbon prepared by in-situ doping is a promising material to significantly alleviate water pollution owing to its low cost, excellent pore structure and good adsorption properties.

  相似文献   
236.

The interaction of nanoplastics (NPls) and engineered nanoparticles (ENPs) with organic matter and environmental pollutants is particularly important. Therefore, their behavior should be investigated under the different salinity conditions, mimicking rivers and coastal environments, to understand this phenomenon in those areas. In this work, we analyzed the elementary characteristics of polystyrene-PS (unmodified surface and modified with amino or carboxyl groups) and titanium dioxide-TiO2 nanoparticles. The effect of salinity on their colloidal properties was studied too. Also, the interaction with different types of proteins (bovine serum albumin-BSA and tilapia proteins), as well as the formation of the BSA corona and its effect on the colloidal stability of nanoparticles, were evaluated. The morphology and dispersion of sizes were more uniform in unmodified-surface PS-NPs (70.5?±?13.7 nm) than in TiO2-NPs (131.2?±?125.6 nm). Likewise, Rama spectroscopy allowed recognizing peaks associated with the PS phenyl group aromatic ring in unmodified-surface PS-NPs (621, 1002, 1582, and 1602 cm?1). For TiO2-NPs, the data suggest belonging to the tetragonal form, also known as rutile (445, 610 cm?1). The elevation of salinity dose-dependently decreased NP colloid stability, with more significant variation in the PS-NPs compared to TiO2-NPs. The organic matter is also involved in this phenomenon, differentially as a function of time compared to its absence (unmodified-surface PS-NPs 30 psu/TOC 5 mgL?1/24 h: 2876.6?±?378.03 nm; unmodified-surface PS-NPs 30 psu/24 h: 2133?±?49.57 nm). In general, the TiO2-NPs demonstrated greater affinity with all proteins tested (0.066 g/L). It was observed that morphology, size, and surface chemical modification intervene in a relevant way in the interaction of the nanoparticles with bovine serum albumin (unmodified-surface PS-NPs 298 K: 6.08E+02; 310 K: 6.63E+02; TiO2-NPs 298 K: 8.76E+02; 310 K: 1.05E+03 L mol?1) and tilapia tissues proteins (from blood, gills, liver, and brain). Their morphology and size also determined the protein corona formation and the NPs’ agglomeration. These findings can provide references during knowledge transfer between NPls and ENPs.

  相似文献   
237.
Environmental Science and Pollution Research - Mercury injection test shows that wallpaper is a porous building material with a complex fractal mass transfer channel. Therefore, fractional...  相似文献   
238.
Environmental Science and Pollution Research - This study aimed to investigate the compression behaviors of mechanically biologically treated (MBT) wastes. For this purpose, the short-term...  相似文献   
239.

The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution.

Toxicity rate of metals in sediments from urban river network indirectly intensified by nutrients accumulation

  相似文献   
240.
Environmental Science and Pollution Research - In the context of the rapid development of the Belt and Road (B&R) Initiative, the continuous transfer of Sino-US trade to the B&R...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号