首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   7篇
安全科学   16篇
废物处理   8篇
环保管理   78篇
综合类   36篇
基础理论   76篇
环境理论   1篇
污染及防治   58篇
评价与监测   20篇
社会与环境   6篇
灾害及防治   5篇
  2023年   5篇
  2022年   3篇
  2021年   4篇
  2018年   2篇
  2017年   4篇
  2016年   13篇
  2015年   7篇
  2014年   5篇
  2013年   22篇
  2012年   11篇
  2011年   15篇
  2010年   5篇
  2009年   12篇
  2008年   15篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   16篇
  2003年   10篇
  2002年   13篇
  2001年   11篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1987年   6篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1961年   1篇
  1959年   1篇
  1929年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
301.
A hypothesis for progressive nitrogen limitation (PNL) proposes that net primary production (NPP) will decline through time in ecosystems subjected to a step-function increase in atmospheric CO2. The primary mechanism driving this response is a rapid rate of N immobilization by plants and microbes under elevated CO2 that depletes soils of N, causing slower rates of N mineralization. Under this hypothesis, there is little long-term stimulation of NPP by elevated CO2 in the absence of exogenous inputs of N. We tested this hypothesis using data on the pools and fluxes of C and N in tree biomass, microbes, and soils from 1997 through 2002 collected at the Duke Forest free-air CO2 enrichment (FACE) experiment. Elevated CO2 stimulated NPP by 18-24% during the first six years of this experiment. Consistent with the hypothesis for PNL, significantly more N was immobilized in tree biomass and in the O horizon under elevated CO2. In contrast to the PNL hypothesis, microbial-N immobilization did not increase under elevated CO2, and although the rate of net N mineralization declined through time, the decline was not significantly more rapid under elevated CO2. Ecosystem C-to-N ratios widened more rapidly under elevated CO2 than ambient CO2 indicating a more rapid rate of C fixation per unit of N, a processes that could delay PNL in this ecosystem. Mass balance calculations demonstrated a large accrual of ecosystem N capital. Is PNL occurring in this ecosystem and will NPP decline to levels under ambient CO2? The answer depends on the relative strength of tree biomass and O-horizon N immobilization vs. widening C-to-N ratios and ecosystem-N accrual as processes that drive and delay PNL, respectively. Only direct observations through time will definitively answer this question.  相似文献   
302.
Owing to the lack of information about the distribution patterns of many taxonomic groups, biodiversity conservation strategies commonly rely on a surrogate taxa approach for identifying areas of maximum conservation potential. Macroinvertebrates or fish are the most likely candidates for such a role in many freshwater systems. The usefulness of the surrogate taxa depends largely on community concordance, i.e., the degree of similarity in community patterns among taxonomic groups across a set of sites. We examined the effect of the spatial scale of a. study on the strength of community concordance among macroinvertebrates, bryophytes, and fish by comparing the concordance between ordinations of these groups in 101 boreal stream sites. We specifically asked if communities spanning several drainages are more concordant than those originating from a single drainage system. Our results indicate that community concordance is affected by spatial extent, being variable and generally weak at the scale of individual drainages, but strong across multiple drainage systems and ecoregions. We attribute this finding to different taxonomic groups responding to similar environmental factors and sharing a similar latitudinal gradient of community structure when viewed across large spatial scales. We also identified a "gradient of concordance," with sites contributing disproportionately to community concordance being in relatively large streams with high microhabitat variability. Overall, our results suggest that the degree of community concordance among freshwater organism groups depends critically on the spatial extent of the study, and surrogate groups at the scale of single river systems should be used with caution.  相似文献   
303.
Freshwater ecosystems, generally adjacent to human population and more contaminated relative to adjacent marine ecosystems, are vulnerable to microplastic contamination. We sampled 7 species of fish from Lake Ontario and Lake Superior and assessed their gastrointestinal (GI) tracts to quantify ingested microplastics and other anthropogenic particles. A subset of the microparticles were chemically analyzed to confirm polymer types and anthropogenic origins. We documented the highest concentration of microplastics and other anthropogenic microparticles ever reported in bony fish. We found 12,442 anthropogenic microparticles across 212 fish (8 species) from nearshore Lake Ontario, 943 across 50 fish (1 species) from Humber River, and 3094 across 119 fish (7 species) from Lake Superior. Fish from Lake Ontario had the greatest mean abundance of anthropogenic microparticles in their GI tracts (59 particles/fish [SD 104]), with up to 915 microparticles in a single fish. Fish from Lake Superior contained a mean [SD] of 26 [74] particles/fish, and fish from Humber River contained 19 [14] particles/fish. Most particles were microfibers. Overall, ≥90% of particles were anthropogenic, of which 35-59% were microplastics. Polyethylene (24%), polyethylene terephthalate (20%), and polypropylene (18%) were the most common microplastics. Ingestion of anthropogenic particles was significantly different among species within Lake Ontario (p < 0.05), and the abundance of anthropogenic particles increased as fish length increased in Lake Ontario (ρ = 0.62). Although we cannot extrapolate the concentration of microplastics in the water and sediments of these fish, the relatively high abundance of microplastics in the GI tracts of fish suggests environmental exposure may be above threshold concentrations for risk.  相似文献   
304.
Anthropogenic impacts have reduced natural areas but increased the area of anthropogenic landscapes. There is debate about whether anthropogenic landscapes (e.g., farmlands, orchards, and fish ponds) provide alternatives to natural habitat and under what circumstances. We considered whether anthropogenic landscapes can mitigate population declines for waterbirds. We collected data on population trends and biological traits of 1203 populations of 579 species across the planet. Using Bayesian generalized linear mixed models, we tested whether the ability of a species to use an anthropogenic landscape can predict population trends of waterbird globally and of species of conservation concern. Anthropogenic landscapes benefited population maintenance of common but not less-common species. Conversely, the use of anthropogenic landscapes was associated with population declines for threatened species. Our findings delineate some limitations to the ability of anthropogenic landscapes to mitigate population declines, suggesting that the maintenance of global waterbird populations depends on protecting remaining natural areas and improving the habitat quality in anthropogenic landscapes. Article impact statement: Protecting natural areas and improving the quality of anthropogenic landscapes as habitat are both needed to achieve effective conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号