首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2569篇
  免费   51篇
  国内免费   30篇
安全科学   117篇
废物处理   104篇
环保管理   767篇
综合类   165篇
基础理论   559篇
环境理论   1篇
污染及防治   658篇
评价与监测   180篇
社会与环境   81篇
灾害及防治   18篇
  2023年   17篇
  2022年   24篇
  2021年   25篇
  2020年   26篇
  2019年   29篇
  2018年   34篇
  2017年   39篇
  2016年   53篇
  2015年   48篇
  2014年   41篇
  2013年   319篇
  2012年   84篇
  2011年   104篇
  2010年   96篇
  2009年   75篇
  2008年   112篇
  2007年   122篇
  2006年   131篇
  2005年   106篇
  2004年   74篇
  2003年   100篇
  2002年   94篇
  2001年   35篇
  2000年   42篇
  1999年   31篇
  1998年   45篇
  1997年   34篇
  1996年   38篇
  1995年   34篇
  1994年   28篇
  1993年   26篇
  1992年   33篇
  1991年   28篇
  1990年   28篇
  1989年   23篇
  1988年   30篇
  1987年   24篇
  1986年   23篇
  1985年   26篇
  1984年   45篇
  1983年   33篇
  1982年   39篇
  1981年   38篇
  1980年   27篇
  1979年   45篇
  1978年   30篇
  1977年   23篇
  1976年   21篇
  1973年   11篇
  1971年   11篇
排序方式: 共有2650条查询结果,搜索用时 15 毫秒
941.
A dynamic simulation model was constructed using outputs from a balanced Gulf of Maine (GOM) energy budget model as the initial parameter set. The model was structured to provide a recipient control set of dynamics, largely based off of flows to and from different biological groups. The model was used to produce Monte Carlo simulations that were compared (percent change in biomass) with basecase simulations for a variety of scenarios. Changes in primary production, large increases in pelagic and demersal fish biomass, increases in fishing mortality, and large increases in top predators such as baleen whales and pinnepids were simulated. These scenarios roughly simulated the potential impacts of climate change, altered fishing pressure, additional protected species mitigations, and combinations thereof. Results suggest that the GOM system is primarily influenced by bottom-up processes involving phytoplankton, zooplankton, and bacterial biomass. Pelagic and demersal fish were important in determining trends in some of the scenarios. Marine mammals, large pelagic fish, and seabirds have a minor role in the GOM system in terms of biomass flows among the ecosystem components. The system is resilient to large-scale change due, in part to many predator–prey linkages. However, major alterations could occur from sustained climate change, high fishing rates, and by combinations of these types of external forcing mechanisms.  相似文献   
942.
Behavioral observations using a remotely operated vehicle (ROV) in the Gulf of California in March, 2003, provided insights into the vertical distribution, feeding and anatomy of the rare and delicate ctenophore Thalassocalyce inconstans. Additional archived ROV video records from the Monterey Bay Aquarium Research Institute of 288 sightings of T. inconstans and 2,437 individual observations of euphausiids in the Gulf of California and Monterey Canyon between 1989 and 2005 were examined to determine ctenophore and euphausiid prey depth distributions with respect to temperature and dissolved oxygen concentration [dO]. In the Gulf of California most ctenophores (96.9%) were above 350 m, the top of the oxygen minimum layer. In Monterey Canyon the ctenophores were more widely distributed throughout the water column, including the hypoxic zone, to depths as great as 3,500 m. Computer-aided behavioral analysis of two video records of the capture of euphausiids by T. inconstans showed that the ctenophore contracted its bell almost instantly (0.5 s), transforming its flattened, hemispherical resting shape into a closed bi-lobed globe in which seawater and prey were engulfed. Euphausiids entrapped within the globe displayed a previously undescribed escape response for krill (‘probing behavior’), in which they hovered and gently probed the inner surfaces of the globe with antennae without stimulating further contraction by the ctenophore. Such rapid bell contraction could be effected only by a peripheral sphincter muscle even though the presence of circumferential ring musculature was unknown for the Phylum Ctenophora. Thereafter, several live T. inconstans were collected by hand off Barbados and microscopic observations confirmed that assumption.  相似文献   
943.
Prey living in risky environments can adopt a variety of behavioral tactics to reduce predation risk. In systems where predators regulate prey abundance, it is reasonable to assume that differential patterns of habitat use by prey species represent adaptive responses to spatial variation in predation. However, patterns of habitat use also reflect interspecific competition over habitat. Collared (Dicrostonyx groenlandicus) and brown (Lemmus trimucronatus) lemmings represent such a system and possess distinct upland tundra versus mesic meadow habitat preferences consistent with interspecific competition. Yet, we do not know whether this habitat preference might also reflect differences in predation risk or whether the two species differ in their behavioral tactics used to avoid predation. We performed experiments where we manipulated putative predation risk perceived by lemmings by increasing protective cover in upland and meadow habitats while we recorded lemming activity and behavior. Both lemming species preferentially used cover more than open patches, but Dicrostonyx was more vigilant than Lemmus. Both species also constrained their activity to protective patches in upland and meadow habitats, but during different periods of the day. Use of cover and vigilance were independent of habitat, suggesting that both species live in a fearsome but flattened landscape of fear at Walker Bay (Nunavut, Canada), and that their habitat preference is a consequence of competition rather than predation risk. Future studies aiming to map the contours of fear in multi-prey–predator systems should consider how predation and competition interact to modify prey species’ habitat preference, patch use, and vigilance.  相似文献   
944.
Despite its successes, the U.S. Endangered Species Act (ESA) has proven challenging to implement due to funding limitations, workload backlog, and other problems. As threats to species survival intensify and as more species come under threat, the need for the ESA and similar conservation laws and policies in other countries to function efficiently has grown. Attempts by the U.S. Fish and Wildlife Service (USFWS) to streamline ESA decisions include multispecies recovery plans and habitat conservation plans. We address species status assessment (SSA), a USFWS process to inform ESA decisions from listing to recovery, within the context of multispecies and ecosystem planning. Although existing SSAs have a single-species focus, ecosystem-based research can efficiently inform multiple SSAs within a region and provide a foundation for transition to multispecies SSAs in the future. We considered at-risk grassland species and ecosystems within the southeastern United States, where a disproportionate number of rare and endemic species are associated with grasslands. To initiate our ecosystem-based approach, we used a combined literature-based and structured World Café workshop format to identify science needs for SSAs. Discussions concentrated on 5 categories of threats to grassland species and ecosystems, consistent with recommendations to make shared threats a focus of planning under the ESA: (1) habitat loss, fragmentation, and disruption of functional connectivity; (2) climate change; (3) altered disturbance regimes; (4) invasive species; and (5) localized impacts. For each threat, workshop participants identified science and information needs, including database availability, research priorities, and modeling and mapping needs. Grouping species by habitat and shared threats can make the SSA process and other planning processes for conservation of at-risk species worldwide more efficient and useful. We found a combination of literature review and structured discussion effective for identifying the scientific information and analysis needed to support the development of multiple SSAs. Article impact statement: Species status assessments can be improved by an ecosystem-based approach that groups imperiled species by shared habitats and threats.  相似文献   
945.
Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce a mean secondary flow in the form of counter-rotating streamwise vortices—this arrangement is prevalent, for example, in open-channel flows relevant to hydraulic engineering. These counter-rotating vortices flank regions of predominant excess(deficit) in mean streamwise velocity and downwelling(upwelling) in mean vertical velocity. The secondary flows have been definitively attributed to the lower surface conditions, and are now known to be a manifestation of Prandtl’s secondary flow of the second kind—driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor (Anderson et al. J Fluid Mech 768:316–347, 2015). The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) transport equation for streamwise vorticity, which has revealed the scaling dependence of streamwise circulation intensity upon characteristics of the problem. The scaling arguments are supported by a recent numerical parametric study on the effect of spacing. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term has been used to represent the effects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with a series of large-eddy simulation cases wherein vortex forcing model parameters were altered to capture different values of spanwise spacing, all of which demonstrate that the model can impose the effects of spanwise topographic heterogeneity (absent the need to actually model roughness elements); these results also justify use of the vortex forcing model in the similarity solution.  相似文献   
946.
Seasonal variations in phytoplankton abundance and their composition were studied at five stations in the middle region (between Al-Hindiya barrage to Kifil City) of the Euphrates River in Iraq between March, 2004, and February, 2005. A total 151 taxa of phytoplankton were identified, belonging to Bacillariophyceae (98), Chlorophyceae (33), Cyanophyceae (14), Euglenophyceae (2), Xanthophyceae (2), and Dinophyceae (2). The total abundance of phytoplankton cells varied from 136 to 5312 cells l(-1) with maxima in spring and fall. Bacillariophyceae were the most abundant group at all stations. Some species of phytoplankton occurred continuously during the study period (Cyclotella ocellata, C. meneghiana, Cocconeis placentula, Nitzchia spp, Meringosphaera spinosa). The study recorded four species as new records for Iraqi. The phytoplankton was indicative of oligotrophic conditions although it showed some signs of organic pollution near cities.  相似文献   
947.
Gagnon PR  Passmore HA  Platt WJ  Myers JA  Paine CE  Harms KE 《Ecology》2010,91(12):3481-6; discussion 3503-14
Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our "pyrogenicity as protection" hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis.  相似文献   
948.
Moore BD  Lawler IR  Wallis IR  Beale CM  Foley WJ 《Ecology》2010,91(11):3165-3176
Ecologists trying to understand the value of habitat to animals must first describe the value of resources contained in the habitat to animals and, second, they must describe spatial variation in resource quality at a resolution relevant to individual animal foraging. We addressed these issues in a study of koalas (Phascolarctos cinereus) in a Eucalyptus woodland. We measured beneficial and deterrent chemical characteristics as well as the palatability of trees using a near-infrared spectroscopic model based on direct feeding experiments. Tree use by koalas was influenced by tree size and foliar quality but was also context-dependent: trees were more likely to be visited if they were surrounded by small, unpalatable trees or by large, palatable trees. Spatial autocorrelation analysis and several mapping approaches demonstrated that foliar quality is spatially structured in the woodland at a scale relevant to foraging decisions by koalas and that the spatial structure is an important component of habitat quality.  相似文献   
949.
Recently, we demonstrated that the highest densities of fruit pulp are located in the uppermost zones of tree crowns. Since heterogeneous distributions of depletable food is theorized to foster contest competition, we tested three hypotheses involving rank differences among species of arboreal frugivores: (1) In the absence of competitors, species tend to feed in higher strata of tree crowns; (2) interspecific contest competition occurs through monopolization and usurpation of feeding sites in these higher strata; and (3) subordinate species decrease their feeding height and ingestion rate when dominants enter the food patch. To test these hypotheses, we observed chimpanzees (Pan troglodytes), red-tailed monkeys (Cercopithecus ascanius), blue monkeys (Cercopithecus mitis), and gray-cheeked mangabeys (Lophocebus albigena) in Kibale National Park, Uganda. We found that: (1) all four primates fed preferentially in upper tree crowns when alone, (2) dominant species monopolized and aggressively usurped the upper crown when co-feeding with subordinates and the latter retreated below the middle of tree crowns, (3) in the presence of dominant species, subordinate species showed lower standardized feeding height and modified their food intake rates, while dominants were not affected by the subordinate species, (4) subordinates moved down at the arrival of and up at the departure of dominants, and (5) the presence of folivores in the tree did not affect the feeding height of a frugivore, even through folivores were socially dominant. Contrary to expectations, we found that red-tailed monkeys decreased their movements between successive fruits that they ate in the presence of blue monkeys compared to when they were feeding alone, perhaps to avoid disturbing dominants and attracting aggression or because they ingested more semi-ripe and green unripe fruits, i.e., more food of lower quality.  相似文献   
950.
We used the electroantennogram (EAG) technique to compare the antennal sensitivity of both sexes of the giant swallowtail butterfly, Papilio cresphontes to four doses (1, 10, 100, and 1,000 μg) of the leaf essential oils of Zanthoxylum clava-herculis and Ptelea trifoliata (key host plants) and Sassafras albidum (a marginal or non-host plant). The main hypothesis tested was that P. cresphontes will show greater olfactory sensitivity to volatiles of the key host plants than to volatiles of the marginal host plant, in particular at low doses. At the lower doses, extract of the key host plant, Z. clava-herculis elicited greater EAG responses in both sexes than extracts of the remaining two plants. At higher doses, however, extracts of P. trifoliata and S. albidum elicited greater EAG responses than extract of Z. clava-herculis. These results partly support our hypothesis and may suggest that Z. clava-herculis is a more preferred host plant of P. cresphontes than P. trifoliata. In general, female butterflies showed greater EAG responses than males to the three plant extracts at the higher doses. Preliminary coupled gas chromatography-electroantennogram (GC-EAD) tests revealed four components each from Z. clava-herculis and P. trifoliata (three peaks common to both extracts) and seven from S. albidum (one shared with Z. clava-herculis) which elicited GC-EAD activity in P. cresphontes females, but the peaks were un-indentified because most were detected in trace amounts. In addition, the chemical composition of the leaf essential oil of Z. clava-herculis was analyzed by GC–MS. The leaf essential oils consisted of 25 components, largely menthane monoterpenoids, dominated by limonene and 1,8-cineole, but neither of the two major components elicited significant GC-EAD response in P. cresphontes. These results are discussed in relation to host-plant selection in P. cresphontes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号