全文获取类型
收费全文 | 904篇 |
免费 | 2篇 |
国内免费 | 65篇 |
专业分类
安全科学 | 21篇 |
废物处理 | 55篇 |
环保管理 | 83篇 |
综合类 | 115篇 |
基础理论 | 225篇 |
污染及防治 | 351篇 |
评价与监测 | 67篇 |
社会与环境 | 50篇 |
灾害及防治 | 4篇 |
出版年
2023年 | 2篇 |
2022年 | 32篇 |
2021年 | 3篇 |
2020年 | 6篇 |
2019年 | 10篇 |
2018年 | 62篇 |
2017年 | 12篇 |
2016年 | 33篇 |
2015年 | 37篇 |
2014年 | 27篇 |
2013年 | 53篇 |
2012年 | 26篇 |
2011年 | 54篇 |
2010年 | 43篇 |
2009年 | 46篇 |
2008年 | 48篇 |
2007年 | 75篇 |
2006年 | 47篇 |
2005年 | 29篇 |
2004年 | 66篇 |
2003年 | 45篇 |
2002年 | 28篇 |
2001年 | 90篇 |
2000年 | 31篇 |
1999年 | 13篇 |
1998年 | 6篇 |
1997年 | 6篇 |
1996年 | 9篇 |
1995年 | 6篇 |
1994年 | 6篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 4篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1964年 | 1篇 |
1960年 | 1篇 |
1951年 | 1篇 |
排序方式: 共有971条查询结果,搜索用时 15 毫秒
961.
Dai B. Yang Ya Q. Wang Wen X. Liu Shu Tao 《Journal of environmental science and health. Part. B》2013,48(4):307-313
Recent studies have focused on enantiomeric behaviors of chiral organochlorine pesticides (OCPs) in biotic matrix because they provide insights into the biotransformation processes of chiral OCPs. In the present paper, a double in-line column chromatographic method was developed to effectively remove the lipid impurity in different biotic samples for clean-up of OCPs. After an initial Soxhlet extraction of OCPs from the biotic samples by a mixture of acetone and dichloromethane (DCM), dimethyl sulfoxide (DMSO) was directly added to the extract, and low boiling point solvents (acetone and DCM) were then evaporated. OCPs remained in DMSO were eluted via column 1 filled with silicon gel, and subsequently passed through column 2 packed with 15% deactivated florisil. This novel method was characterized by significant time and solvent savings. The recovery rates of α -HCH (hexachlorocyclohexane), β -HCH, γ -HCH and δ -HCH were 78.5 ± 3.1%, 72.4 ± 7.7%, 72 ± 4.0% and 70.0 ± 8.7%, respectively, and 92.5 ± 3.8%, 79.7 ± 6.7% and 83.4 ± 6.5% for 1,1-dichloro-2-(2-chlorophenyl)-2-(4- chlorophenyl) ethylene (o,p′-DDE), 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chloro phenyl)ethane (o,p′-DDD) and 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) ethane (o,p′-DDT), separately. In addition, the separation efficiencies of the target compounds by both achiral and chiral gas chromatographic columns were satisfactory using the established method. Therefore, the double in-line column chromatography was a useful alternative method for pretreatment of OCPs in different biotic samples. 相似文献
962.
X. Yang V.C. Baligar D.C. Martens R. B. Clark 《Journal of environmental science and health. Part. B》2013,48(4):569-583
Abstract Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants. 相似文献
963.
Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH < 4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20 mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L−1 using 78Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H2SO4 and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. 相似文献
964.
Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants
R. Ochoa-GonzálezP. Córdoba M. Díaz-Somoano O. FontM.A. López-Antón C. LeivaM.R. Martínez-Tarazona X. QuerolC. Fernández Pereira A. TomásP. Gómez P. Mesado 《Chemosphere》2011,85(4):565-570
This paper evaluates the speciation and partitioning of mercury in two Spanish pulverised coal combustion power plants (PP1 and PP2), equipped with wet limestone-based flue gas desulphurisation facilities (FGD) operating with forced oxidation and re-circulation of FGD water streams. These plants are fed with coal (PP1) and coal/pet-coke blends (PP2) with different mercury contents. The behaviour, partitioning and speciation of Hg were found to be similar during the combustion processes but different in the FGD systems of the two power plants. A high proportion (86-88%) of Hg escaped the electrostatic precipitator in gaseous form, Hg2+ being the predominant mercury species (68-86%) to enter the FGD. At this point, a relatively high total Hg retention (72% and 65%) was achieved in the PP1 and PP2 (2007) FGD facilities respectively. However, during the second sampling campaign for PP2 (2008), the mercury removal achieved by the FGD was much lower (26%). Lab-scale tests point to liquid/gas ratio as the main parameter affecting oxidised mercury capture in the scrubber. The partitioning of the gaseous mercury reaching the FGD system in the wastes and by-products differed. In the low mercury input power plant (PP1) most of the mercury (67%) was associated with the FGD gypsum. Moreover in PP2 a significant proportion of the gaseous mercury reaching the FGD system remained in the aqueous phase (45%) in the 2007 sampling campaign while most of it escaped in 2008 (74%). This may be attributed to the scrubber operating conditions and the different composition and chemistry of the scrubber solution probably due to the use of an additive. 相似文献
965.
966.
Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing 总被引:1,自引:0,他引:1
Birget Moe Hanyong Peng Xiufen Lu Baowei Chen Lydia W.L. Chen Stephan Gabos Xing-Fang Li X. Chris Le 《环境科学学报(英文版)》2016,28(11):113-124
The occurrence of a large number of diverse arsenic species in the environment and in biological systems makes it important to compare their relative toxicity. The toxicity of arsenic species has been examined in various cell lines using different assays, making comparison difficult. We report real-time cell sensing of two human cell lines to examine the cytotoxicity of fourteen arsenic species: arsenite(As~Ⅲ), monomethylarsonous acid(MMA~Ⅲ) originating from the oxide and iodide forms, dimethylarsinous acid(DMA~Ⅲ), dimethylarsinic glutathione(DMAG~Ⅲ), phenylarsine oxide(PAO~Ⅲ), arsenate(AsV), monomethylarsonic acid(MMA~Ⅴ), dimethylarsinic acid(DMA~Ⅴ),monomethyltrithioarsonate(MMTTA~Ⅴ), dimethylmonothioarsinate(DMMTA~Ⅴ),dimethyldithioarsinate(DMDTA~Ⅴ), 3-nitro-4-hydroxyphenylarsonic acid(Roxarsone, Rox),and 4-aminobenzenearsenic acid(p-arsanilic acid, p-ASA). Cellular responses were measured in real time for 72 hr in human lung(A549) and bladder(T24) cells. IC50 values for the arsenicals were determined continuously over the exposure time, giving rise to IC50 histograms and unique cell response profiles. Arsenic accumulation and speciation were analyzed using inductively coupled plasma-mass spectrometry(ICP-MS). On the basis of the 24-hr IC50 values, the relative cytotoxicity of the tested arsenicals was in the following decreasing order: PAO~Ⅲ? MMA~Ⅲ≥ DMA~Ⅲ≥ DMAG~Ⅲ≈ DMMTA~Ⅴ≥ As~Ⅲ? MMTTA~Ⅴ AsV DMDTA~ⅤDMA~Ⅴ MMA~Ⅴ≥ Rox ≥ p-ASA. Stepwise shapes of cell response profiles for DMA~Ⅲ, DMAG~Ⅲ,and DMMTA~Ⅴcoincided with the conversion of these arsenicals to the less toxic pentavalent DMA~Ⅴ. Dynamic monitoring of real-time cellular responses to fourteen arsenicals provided useful information for comparison of their relative cytotoxicity. 相似文献
967.
CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R2, the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. 相似文献
968.
To understand the short-term effects of forest gap by human harvesting on soil available nutrient in Pinus massoniana plantations, the variations of soil ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) concentrations in the gap center and gap edge during growing season were observed in seven gaps of different size (Gl: 100 m2; G2:225 m2; G3:400 m2; G4:625 m2; G5:900 m2; G6:1225 m2; G7:1600 m2) and pure understory of a 39-year-old masson pine plantation in a hilly area of the upper reaches of Yangtze River. The results showed that in the early stage of gap formation, the gap size had significant effect on NH4+-N, the season changes on NP3--N, and the interaction effect of gap size and seasonal variation on NH4+-N and NO3--N. The difference of NH4+-N and NO3--N between the gap center and gap edge was not significant. (I) The NH4+-N content was 4.30-11.99 mg kg-1, and NO3--N content was 2.57-10.81 mg kg-1. There was no obvious difference in NH4+-N and N03--N among gaps of different size in early or late growing seasons, when both increased first and decreased afterwards in the middle of growing season. The gaps of 100∼400 m2 area had a higher content of available nitrogen. (2) The seasonal dynamic differed between NH4+-N and NO3--N, with the former lower in middle growing season whereas the latter higher in the middle growing season but lower in the end of growing season. The soil NH4+-N was higher than NO3- -N in the early and late periods, but lower in the middle period. (3) The soil NH4+-N and NO3--N in parts of gaps were lower than understory in the early and late growing season. (4) Correlation analyses showed that NH4+-N had significant positive correlation with microbial biomass nitrogen (MBN), and NO3--N with soil temperature, MBN and organic matter. But the impact of soil water content on available nitrogen was not significant. These results suggested that soil temperature and microbial activity variation caused by gap harvesting are the main factors affecting soil available nitrogen content of Pinus massoniana plantations. 相似文献
969.
Bagchi S Briske DD Wu XB McClaran MP Bestelmeyer BT Fernández-Giménez ME 《Ecological applications》2012,22(2):400-411
Resilience-based frameworks, including state-and-transition models (STM), are being increasingly called upon to inform policy and guide ecosystem management, particularly in rangelands. Yet, multiple challenges impede their effective implementation: (1) paucity of empirical tests of resilience concepts, such as alternative states and thresholds, and (2) heavy reliance on expert models, which are seldom tested against empirical data. We developed an analytical protocol to identify unique plant communities and their transitions, and applied it to a long-term vegetation record from the Sonoran Desert (1953-2009). We assessed whether empirical trends were consistent with resilience concepts, and evaluated how they may inform the construction and interpretation of expert STMs. Seven statistically distinct plant communities were identified based on the cover of 22 plant species in 68 permanent transects. We recorded 253 instances of community transitions, associated with changes in species composition between successive samplings. Expectedly, transitions were more frequent among proximate communities with similar species pools than among distant communities. But unexpectedly, communities and transitions were not strongly constrained by soil type and topography. Only 18 transitions featured disproportionately large compositional turnover (species dissimilarity ranged between 0.54 and 0.68), and these were closely associated with communities that were dominated by the common shrub (burroweed, Haplopappus tenuisecta); indicating that only some, and not all, communities may be prone to large compositional change. Temporal dynamics in individual transects illustrated four general trajectories: stability, nondirectional drift, reversibility, and directional shifts that were not reversed even after 2-3 decades. The frequency of transitions and the accompanying species dissimilarity were both positively correlated with fluctuation in precipitation, indicating that climatic drivers require more attention in STMs. Many features of the expert models, including the number of communities and participant species, were consistent with empirical trends, but expert models underrepresented recent increases in cacti while overemphasizing the introduced Lehmann's lovegrass (Eragrostis lehmanniana). Quantification of communities and transitions within long-term vegetation records presents several quantitative metrics such as transition frequency, magnitude of accompanying compositional change, presence of unidirectional trajectories, and lack of reversibility within various timescales, which can clarify resilience concepts and inform the construction and interpretation of STMs. 相似文献
970.