首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9181篇
  免费   444篇
  国内免费   3349篇
安全科学   625篇
废物处理   562篇
环保管理   685篇
综合类   4870篇
基础理论   1542篇
污染及防治   3578篇
评价与监测   381篇
社会与环境   368篇
灾害及防治   363篇
  2024年   18篇
  2023年   176篇
  2022年   482篇
  2021年   401篇
  2020年   318篇
  2019年   319篇
  2018年   331篇
  2017年   425篇
  2016年   504篇
  2015年   542篇
  2014年   668篇
  2013年   912篇
  2012年   756篇
  2011年   781篇
  2010年   610篇
  2009年   536篇
  2008年   653篇
  2007年   512篇
  2006年   505篇
  2005年   362篇
  2004年   279篇
  2003年   334篇
  2002年   316篇
  2001年   238篇
  2000年   281篇
  1999年   298篇
  1998年   236篇
  1997年   225篇
  1996年   198篇
  1995年   158篇
  1994年   119篇
  1993年   120篇
  1992年   107篇
  1991年   81篇
  1990年   35篇
  1989年   34篇
  1988年   25篇
  1987年   17篇
  1986年   14篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1979年   2篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
171.
生物法处理NOx废气的研究进展   总被引:2,自引:0,他引:2  
氮氧化物 (NOx)是主要的大气污染物之一 ,是治理大气污染的一大难题。对当前国内外生物处理NOx 的研究现状进行了系统的论述 ,介绍了生物过滤法处理氮氧化物的基本原理 ,分析了生物过滤法处理氮氧化物存在的问题 ,并预测该技术的未来发展趋势  相似文献   
172.
使用浸渍法制备的CuO Al2 O3催化剂对吸附苯酚饱和的活性炭进行非均相催化湿式氧化再生研究 ,考察了反应温度、反应时间、催化剂投加量、反应氧分压、投炭量、蒸馏水量对非均相催化湿式氧化再生活性炭的影响结果 ,同时在该实验中得到非均相CuO Al2 O3催化湿式氧化再生活性炭的最佳条件。对催化剂进行了X衍射分析 ,并通过对催化剂的稳定性进行实验 ,得出该催化剂在进行催化湿式氧化再生活性炭的过程中具有较好的稳定性  相似文献   
173.
本文对燃煤手烧炉烟气生成特征进行了分析和研究 ,对燃烧过程二氧化硫、一氧化碳及一氧化氮等有害气体的生成规律和浓度值进行了测定和分析  相似文献   
174.
175.
Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%).  相似文献   
176.
Environmental Science and Pollution Research - Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production....  相似文献   
177.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   
178.
This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.  相似文献   
179.
It is well known that the dissolution of goethite plays an important role in catalyzing the oxidation of organic chemicals. Therefore, this study investigates how surface dissolution of goethite affects 2-chlorophenol oxidation in the goethite/H2O2 process. Experimental results indicate that ligand and reductant can enhance the dissolution rate of goethite, which is surface-controlled. Our results further indicate 2-chlorophenol degradation depends on goethite concentration. In addition, the oxidation rate of 2-CP is correlated with reductive dissolution rate at various dosages of goethite. Moreover, the oxidation mechanism of 2-CP is also a surface-controlled reaction. A mechanism proposed herein indicates that, in addition to the contaminant, its intermediate species affect the oxidation rate as well.  相似文献   
180.
Wang X  Sun C  Wang Y  Wang L 《Chemosphere》2002,46(2):153-161
The comparative toxicities of selected phenols to higher plants Cucumis sativus were measured and the negative logarithm molar concentration of the root elongation median inhibition (IRC50) were derived. Quantitative structure-activity relationships (QSARs) were developed to explore the toxicity influencing factors and for predictive purpose. The toxicity data, fell into two classes: polar narcosis and bio-reactive. For polar narcotic phenols, a highly significant two-parameter QSAR based on 1-octanol/water partition coefficient (logKow) and energy of the lowest unoccupied orbital (E(lumo)) was derived (IRC50 = 0.77 log Kow - 0.39E(lumo) + 2.36 n = 22 r2 = 0.89). The five bio-reactive chemicals proved to show elevated toxicity due to their typical substructure involved diverse reactive mechanisms. In an effort to model all chemicals, a robust multiple-variable QSAR combining logKow, E(lumo) and Qmax, the most negative net atomic charge, was developed (IRC50 = 0.65 logKow - 0.72E(lumo) + 0.23Qmax + 2.81 n = 27 r2 = 0.94), indicating that hydrophobicity, electrophilicity and hydrogen bond interaction contribute mainly to the phytotoxicity. The toxicological data was compared with Tetrahymena pyriformis 2-d population growth inhibition toxicity (IGC50) and excellent interspecies correlations were observed both for the polar narcotics and for five reactive chemicals (for polar narcotics: IRC50 = 0.95IGC50 + 1.07 n = 16 r2 = 0.89; for bio-reactive chemicals: IRC50 = 0.98IGC50 + 2.19 n = 5 r2 = 0.97; and for all: IRC50 = 0.93IGC50 + 1.63 n = 21 r2 = 0.87). This suggested that T pyriformis toxicity could serve as a surrogate of C. sativus toxicity for phenols and interspecies correlation also could be established for reactive chemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号