首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3305篇
  免费   32篇
  国内免费   171篇
安全科学   97篇
废物处理   195篇
环保管理   289篇
综合类   587篇
基础理论   776篇
环境理论   2篇
污染及防治   1127篇
评价与监测   239篇
社会与环境   183篇
灾害及防治   13篇
  2023年   17篇
  2022年   69篇
  2021年   39篇
  2020年   25篇
  2019年   37篇
  2018年   116篇
  2017年   50篇
  2016年   76篇
  2015年   84篇
  2014年   89篇
  2013年   265篇
  2012年   88篇
  2011年   157篇
  2010年   138篇
  2009年   150篇
  2008年   160篇
  2007年   186篇
  2006年   140篇
  2005年   118篇
  2004年   143篇
  2003年   138篇
  2002年   114篇
  2001年   239篇
  2000年   143篇
  1999年   71篇
  1998年   40篇
  1997年   47篇
  1996年   33篇
  1995年   40篇
  1994年   42篇
  1993年   41篇
  1992年   30篇
  1991年   35篇
  1990年   27篇
  1989年   32篇
  1988年   20篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   18篇
  1983年   22篇
  1982年   22篇
  1981年   16篇
  1980年   11篇
  1979年   13篇
  1978年   12篇
  1977年   8篇
  1975年   12篇
  1973年   9篇
  1972年   10篇
排序方式: 共有3508条查询结果,搜索用时 15 毫秒
981.

Background

Soil is one of our most important resources and fulfills many ecological functions such as storage and filtration of water and nutrients, transformation of chemical compounds and nutrients, biomass production, and carbon storage. Such soil functions support ecosystem services provided by soils, which need to be protected to protect soil fertility. However, European soils often contain elevated concentrations of contaminants, putting biodiversity of soil organisms as well as the ecological functions and services at risk. To promote soil ecotoxicology in Switzerland, the Swiss Centre for Applied Ecotoxicology together with the Federal Office for Environment and the Federal Office for Agriculture organized a stakeholder workshop on 7 June 2018 with participants from research, governmental bodies, and associations. One goal of this workshop was to inform participants about currently available risk assessment approaches for soil, the soil risk assessment for plant protection products in Europe, available bioassays and bioindicators, and results of research projects on soil contaminants in Switzerland. Another goal was to discuss the needs for research in soil ecotoxicology in Switzerland and to identify next steps, potential projects, and future collaborations.

Results

The main needs identified during the workshop were the establishment of (bio)indicators to measure soil fertility, functional parameters to determine soil functions, and the preservation of soil biodiversity. Another priority listed was the formation of a working group, which addresses the issue of the development of environmental quality standards for soil. The need for experimental field sites for implementing and testing new approaches or tools for assessing soil quality was also discussed.

Conclusion

The next steps planned are two workshops with national and international experts in soil ecotoxicology to develop a soil monitoring concept for Switzerland and to find suitable bioindicators to evaluate soil fertility. Additionally, a literature review will be performed summarizing the current ecotoxicological state of the art with regard to the development of bioindicators in relation to the monitoring of plant protection products in Swiss soil, to evaluate their effects on soil fertility. Furthermore, all attendees agreed on the need for annual meetings or workshops where experts can present scientific results, participants can exchange information, and future projects and collaborations can be developed.
  相似文献   
982.
Making full use of local weed resources to produce Agaricus bisporus is of great importance in reducing production costs and protecting the environment. In this paper, three trial experiments were conducted on the basis of weed diversity investigation around the Miyun Reservoir and the adjustment of formulation and technology in the industrial production of A. bisporus. Compost samples from different phases of the composting process and at various cultivation stages were collected for the determination of their physical-chemical properties, lignocellulose content, lignocellulolytic enzyme activities, and bacterial communities enrichment by 16S rRNA gene sequencing. The yield of mushrooms in each different trial was also calculated. The results showed several types of reservoir weeds with high, thick and hard stems. The saturated moisture of weeds was 76.78% after baling. The water content, carbon content, and C/N ratio of the samples decreased gradually during composting, but had little change during cultivation. The nitrogen content decreased at the end of phase I and increased at the end of phase II. During composting, the loss rates of hemicellulose and cellulose were both between 40% and 60%, and the loss rate of lignin was between 20% and 30%. During cultivation, instead, the loss rate of lignin was between 16% and 21%. The changes in the content of cellulose and hemicellulose of compost were consistent with that of the activity of the related degradation enzymes. A total of 432 595 valid sequences were obtained by Illumina sequencing for the samples derived from the three composting trials, and the average length of the sequences was 441 bp. Taxonomic analysis showed that the dominant bacteria were Prevotella (phylum Bacteroidetes), Bacillus (phylum Firmicutes), Thermus, Truepera, and Caldicoprobacter (phylum Deinococcus-Thermus), Thermopolyspora (phylum Actinobacteria), and Pseudoxanthomonas (phylum Proteobacteria). The yield of the three trials was in the range of 17.1-19.7 kg/m2. It is thus feasible to use reservoir weeds compost instead of wheat straw compost for the cultivation of A. bisporus. © 2018 Science Press. All rights reserved.  相似文献   
983.
Root-associated microbial communities are very important for biogeochemical cycles of carbon, nitrogen, and sulfur in wetland ecosystems, and help to enhance the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alternifiora has widely invaded Kandelia obovata-dominated habitats, making it necessary to investigate the influence of rootassociated bacteria. The endophytic and rhizosphere bacterial community structures associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of diversity showed that all samples could be significantly clustered into three major groups, according to the bacterial communities of origin. Four phyla, namely, Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were abundant in the rhizoplane of the two salt marsh plants, whereas Cyanobacteria and Proteobacteria were the more abundant endophytic bacteria. Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes in the rhizosphere bacteria of S. alterniflora accounted for 78.0%, 5.6%, 3.3%, and 1.6%, respectively. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. Using linear discriminate analysis, we found some dominant rhizoplane and endophytic bacteria, including Pseudoalteromonadaceae, Vibrionaceae, Methylophilaceae, and Desulfovibrio, which could potentially affect the carbon, nitrogen, and sulfur cycles. Of interest was that endophytic bacteria were more sensitive to plant invasion than rhizosphere bacteria. Thus, the results provide evidence for the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions. © 2018 Science Press. All rights reserved.  相似文献   
984.
Traffic activities in roadways are the major source of heavy metal contamination on the northwestern Sichuan Plateau, China. To characterize the spatial pattern of heavy metal distribution, we collected soil samples and measured the concentrations of five heavy metals (Cd, Cu, Ni, Pb, and Zn) from nine sites in Hongyuan County, Sichuan Province, including three transects that reflected typical gradients of traffic density. Each transect consisted of three levels of traffic density sites. We calculated single pollution index, Nemerow multi-factor index, and potential ecological risk index, to assess the ecological risk of the heavy metal contamination. Results showed that the soils were contaminated by Cd and Zn, with higher concentrations than that of the natural soil background values in all sampling sites. Moreover, Cd and Zn concentrations increased with increasing traffic density, suggesting that traffic activities were potentially responsible for the metal contaminations. The single pollution index indicated that the study sites were heavily contaminated by Cd and slightly polluted by Ni, Pb, and Zn, and the Nemerow multi-factor and potential ecological risk indexes indicated moderate potential ecological risks at the study sites. Specifically, the sites with high traffic density were moderately contaminated and the sites with low traffic density were mildly contaminated. In general, Cd and Zn were highly accumulated in soils of the study region; therefore focus should be on the high ecological hazard associated with soil heavy metal contamination, even in undeveloped regions. © 2018 Science Press. All rights reserved.  相似文献   
985.
In an effort to remove BDE-47 residues from the environment, a bacterial strain that is capable of utilizing BDE-47 as the sole carbon source was isolated and screened from soil collected from an e-waste recycling area in Tianjin to analyze the degradation properties. The strain was preliminarily identified as Enterobacter sp. according to a 16S rDNA gene sequence analysis. The strain degraded 35.8% of 525 μg/L of BDE-47 in 35 d when the initial concentration of bacteria was 7.1 × 105 cells/ mL. The product of the biodegradation of BDE-47 was BDE-28. The biodegradation of BDE-47 fit well with first-order kinetics, and its degradation kinetics was ln Ct = - 0.104t + 6.22. With the addition of an electron acceptor, such as Fe3+, SO4 2- and NO3 -, the BDE-47 degradation rate was significantly increased to 49.8%, 59.1%, and 67.3%, respectively. The above results revealed that the strain could degrade BDE-47, which is of importance in the application of environmental bioremediation of BDE-47. © 2018 Science Press. All rights reserved.  相似文献   
986.
This study aimed to identify the difference in volatile aromatic components and the relationship with the expression pattern of their corresponding bio-synthesis genes in six kiwifruit (Actinidia chinensis) varieties (Cuiyu, Jintao, Jinyan, Chuhong, Donghong, and Xixuan). To provide a foundation for kiwifruit variety recognition, fruit quality evaluation, and molecular-assisted breeding, the volatile aromatic components in the ripe fruits of six kiwifruit varieties were evaluated by head space-solid phase micro extraction/gas chromatography-mass spectrometry. The aroma-synthesis-related genes, including acyltransferases (AcAT16), lipoxygenase (AcLox2), and terpene synthase genes (AcTPS1), were detected by the real time-quantitative polymerase chain reaction (qPCR) during the postharvest stage of fruits. Ninety-two aroma chemicals were identified in the tested kiwifruit cultivars. There were 35, 32, 30, 44, 28, and 17 of aromatic compounds in Cuiyu, Jintao, Jinyan, Chuhong, Donghong, and Xixuan, respectively. Esters were the main aroma components in Cuiyu, Jintao, and Jinyan. The major aromatic compounds of Chuhong, Donghong, and Xixuan were aldehydes and terpenoids. The expression level of AcATs16 and AcLox2 increased, and then decreased during the ripening of kiwifruit fruits. The expression of AcATs16 was significantly higher in Cuiyu and Jinyan than in other varieties. AcLox2 indicated significant abundance in Cuiyu and Chuhong. AcTPS1 was up-regulated in Jintao, Donghong, and Xixuan with fruit ripening; however, this was not observed in Cuiyu, Chuhong, and Jinyan. The difference in the composition and content of volatile aromatic components contributes to the difference in aroma in different kiwifruit cultivars. The diverse expression of AcATs16, AcLox2, and AcTPS1 might be closely related to the synthesis of ethyl butyrate, (E)-2-hexenal, and eucalyptol, respectively. © 2018 Science Press. All rights reserved.  相似文献   
987.
Aquatic plant duckweed has remarkable potential in nutritional water purification and starch accumulation; at present, it has received increasing attention. This study aimed to investigate the ability of duckweed in nutrient recovery from micro-polluted surface water; further, the starch accumulation capacity of duckweed was evaluated. The results showed that duckweed can achieve better depth treatment of the micro-polluted surface water, within 1-day treatment, by duckweed. Ammonia nitrogen and total phosphorus status of Class V and worse than class V water was improved to a superior level; moreover, the nitrogen and phosphorus removal rates were 98.5% and 82.9%, respectively. In addition, duckweed can rapidly accumulate starch during water treatment. The starch content of duckweed was 28.38% and 21.57% (dry weight) in Class V and worse than class V wastewater after 3 days of treatment, respectively, and reached 52.15% and 49.58% on day 15. Moreover, additional carbon dioxide (CO2) supplementation promoted the starch production. The starch content increased by 55.7% compared with that of control, and the average starch accumulation rate increased by 2.72 times in 3 days. Therefore, duckweed can not only rapidly purify micro-polluted water, but also accumulate a large amount of starch. This study forms the basis for wastewater treatment and post-treatment utilization of duckweed biomass. © 2018 Science Press. All rights reserved.  相似文献   
988.
The key to soil spray-sowing technology is the use of the highly-effective rock-corroding strains, and the mechanism of rock corrosion will provide theoretical references to screen the strains. To investigate the corrosion mechanism of limestone by microorganisms, the dominant and highly-effective limestone-corroding strain Gongronella butleri NL-15 was isolated and purified from the microorganisms on the rock surface. The concentration of calcium (Ca), magnesium (Mg), potassium, and phosphorus was analyzed by ICP. The pH of the fermentation broth of the strain at different intervals was measured using a precise pH instrument. The content of organic acids (critic, succinic, lactic, fumaric, acetic, and propanoic acids) and the scanning electron microscope feature of rock particles in the fermentation broth at different intervals were also analyzed by HPLC. The results showed that the concentration of Ca2+ and Mg2+ in the fermentation broth correlated negatively with the pH value (P < 0.01). The pH of control was 6.87, and that of the fermentation broth after 15 days dropped to 5.12. The concentration of Ca and Mg was 38.96 and 10.85 mg/L respectively, whereas that of the fermentation broth after 15 days increased to 367.56 and 76.16 mg/L respectively. The content of the total organic acids and lactic acid increased with increase in fermentation time. The content of the total organic acids on days 2, 5, 9, and 15 in the fermentation broth was 3.43, 5.40, 6.63, and 7.26 mg/mL, respectively, and the content of lactic acid was 1.79, 2.85, 5.16, and 5.04 mg/mL, respectively. The mycelium of the G. butleri NL-15 adhered to the surface of rock particles and threaded into unconsolidated rocks. Thus, the organic acids, especially lactic acid produced by the fungi G. butleri NL-15, caused unconsolidation of rock and improved the growth of fungi mycelium into the unconsolidated rock. This was the primary cause for limestone corrosion, and the release of Ca and Mg from the rock and its disintegration. © 2018 Science Press. All rights reserved.  相似文献   
989.
To study heavy metal pollution and assess the health risk of river water in Huayuan County, Xiangxi, Hunan Province, 11 water samples were collected from the Huayuan River and Brother Rivers in August and December 2016. Heavy metal (Pb, Zn, Cr, Cu, Fe, and Ni) concentrations were determined from the samples. The health risk assessment model recommended by the U.S. Environmental Protection Agency (USEPA) was applied to assess the health risk of heavy metals in the main surface waters of Huayuan County. The results indicated that the concentrations of heavy metals (Pb, Zn, Cr, Cu, Fe, and Ni) of surface water in the research area were 2.57 × 10-3, 4.66 × 10-4, 1.65 × 10-3, 6.27 × 10-4, 0.19, and 8.50 × 10-4 mg/L, respectively. The health risk of surface waters with heavy metals was high. Therefore, the chemical carcinogenic substance (Cr) health risk index was five or six times higher than that of chemical non-carcinogens (Pb, Zn, Cu, and Ni). The average health risk indices of non-carcinogenic substances were in the order Pb > Cu > Zn > Ni. The correlation and principal component analysis of surface water showed that the six heavy metal elements were composed of three main components in the main surface waters of the county. The first principal component was comprised of Fe and Ni (33.28%), which was mainly from internal pollution. The second component was comprised of Cu and Cr (26.98%), which was primarily due to industrial waste water, rainwater leaching mineral waste produced by heavy metal mining, and smelting enterprises. The third component, resulting from geochemical pollution, was Zn (17.10%). The health risk indices triggered by heavy metal in surface waters was high. Heavy metal pollutants in the research area need to be controlled in the order Cr, Pb, Cu, Zn and Ni. © 2018 Science Press. All rights reserved.  相似文献   
990.
The weed inhibition of allelopathic rice PI312777 and nonallelopathic rice Lemont, allelopathic potential of rice rhizospheric soils, as well as the microbial physiological traits of rice rhizospheric soils, were studied by field tests after weedremoving and weed treatments. The results showed that the inhibitory rate of PI312777 at the 7-leaf stage on paddy weeds was 85.82%. Results of the Soil-Agar Sandwich method revealed that the allelopathic potential of PI312777 rhizospheric soils on the inhibitory rate of plant dry weight of barnyard grass was significantly higher at the 5-leaf stage than that at the 3-leaf stage, and increased by 20.16% from the 3-leaf stage to the 5-leaf stage after weed treatment. When at the same leaf stage, the soil microbe biomass carbon and soil respiration, the number of soil bacteria, and activity of soil enzymes (urease, protease, and sucrase) were significantly higher in PI312777 rhizospheric soils than in Lemont rhizospheric soils; they were also higher after the weed-removing treatment than after weed treatment. The largest increase of soil allelopathic potentials and soil microbial physiological indexes in PI312777 rhizospheric soils appeared from the 3-leaf stage to the 5-leaf stage. In case of weed treatment, the allelopathic potential of PI312777 rhizospheric soils on the soil microbe biomass carbon, soil respiration, the number of soil bacteria, activity of urease, activity of protease, and activity of sucrase increased by 53.11%, 51.56%, 38.97%, 44.83%, 60.00%, and 41.92%, respectively, from the 3-leaf stage to the 5-leaf stage. These results indicated that rice allelopathy had a close relationship with the activity of rhizospheric soils. Rice allelochemicals lead to the change of soil microbes; rice allelopathy is a process based on plant-soil interaction. © 2018 Science Press. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号