首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3936篇
  免费   55篇
  国内免费   209篇
安全科学   113篇
废物处理   239篇
环保管理   360篇
综合类   682篇
基础理论   912篇
环境理论   2篇
污染及防治   1366篇
评价与监测   291篇
社会与环境   219篇
灾害及防治   16篇
  2024年   10篇
  2023年   18篇
  2022年   84篇
  2021年   46篇
  2020年   33篇
  2019年   46篇
  2018年   142篇
  2017年   61篇
  2016年   105篇
  2015年   106篇
  2014年   110篇
  2013年   307篇
  2012年   107篇
  2011年   200篇
  2010年   162篇
  2009年   187篇
  2008年   193篇
  2007年   244篇
  2006年   172篇
  2005年   137篇
  2004年   180篇
  2003年   161篇
  2002年   132篇
  2001年   309篇
  2000年   165篇
  1999年   83篇
  1998年   45篇
  1997年   52篇
  1996年   42篇
  1995年   46篇
  1994年   47篇
  1993年   42篇
  1992年   31篇
  1991年   36篇
  1990年   29篇
  1989年   34篇
  1988年   22篇
  1987年   18篇
  1986年   19篇
  1985年   15篇
  1984年   18篇
  1983年   22篇
  1982年   22篇
  1981年   17篇
  1980年   12篇
  1979年   13篇
  1978年   12篇
  1975年   12篇
  1973年   9篇
  1972年   10篇
排序方式: 共有4200条查询结果,搜索用时 15 毫秒
421.
农田恶性杂草相比普通杂草的传播更为迅速且难以有效防治,对农业生产危害严重.明确典型恶性杂草当前潜在分布面积及未来气候变化下对耕地的潜在入侵风险对农业生产管理具有重要意义.以广泛分布于青藏高原农田中的3种常见恶性杂草,即野燕麦(Avena fatua L.)、一年生早熟禾(Poa annua L.)和狗尾草[Setaria viridis(L.)P.Beauv.]为研究对象,利用广义增强模型(GBM)、广义线性模型(GLM)、人工神经网络(ANN)、最大熵(MaxEnt)、随机森林(RF)及多元自适应回归样条(MARS)算法集合预测上述3种杂草在青藏高原的潜在地理分布以及驱动其变化的关键因子,以评估其对耕地的入侵风险.未来气候场景采用最新的第六次国际耦合模式比较计划(CMIP6)框架下2050年的4种共享经济路线(SSP1-2.6、2-4.5、3-7.0、5-8.5).结果显示:野燕麦适宜分布区面积约为3.5912×10^(5) km^(2),主要分布于四川西南部及青海东部,零星分布于甘肃、西藏和新疆;一年生早熟禾和狗尾草的适宜分布区面积约为4.3046×10^(5) km^(2)和2.0036×10^(5) km^(2),均主要分布于四川西南部和西藏东南部,零星分布于青海东部和甘肃南部.年均温是3种杂草分布的最主要驱动因子.此外,人类足迹和土壤有效氮是影响野燕麦分布的相对重要因子;土壤酸碱度、最暖季降水量是影响一年生早熟禾分布的重要因子;温度季节性、最暖季降水量是影响狗尾草分布的重要因子.预计至2050年,3种杂草在4种情境下均会出现不同程度的扩张,狗尾草的扩张面积表现出随辐射强迫的增强呈先升高后趋于稳定的趋势,而另两种杂草则呈先升后降的趋势.预计3种杂草的潜在分布面积在耕地中的占比与扩张面积的变化趋势一致,且在主产区的占比高于非主产区.模拟结果表明,未来气候变化下,随着3种恶性杂草的适宜分布区面积的扩张,其对青藏高原耕地的入侵风险将增加,尤其是粮食主产区所面临威胁更为严峻,建议应重点关注青藏高原粮食主产区恶性杂草的生理生态、迁移扩散和防治技术研究.(图6表2参61)  相似文献   
422.
423.
Methane (CH(4)), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH(4) is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH(4) oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH(4) (V(max)) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O(2) from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O(2) and CH(4) in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH(4) slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O(2) decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N(2) and CO(2), may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O(2) under the natural condition may overestimate the penetration of O(2) into the soil cover layer and consequently overestimate the oxidation of CH(4).  相似文献   
424.
425.
Direct multicomponent analysis of malodorous volatile organic compounds (VOCs) present in ambient air samples from 29 swine (Sus scrofa) production facilities was used to develop a 19-component artificial swine odor solution that simulated olfactory properties of swine effluent. Analyses employing either a human panel consisting of 14 subjects or gas chromatography were performed on the air stream from an emission chamber to assess human olfactory responses or odorant concentration, respectively. Analysis of the olfactory responses using Fisher's LSD statistics showed that the subjects were sensitive to changes in air concentration of the VOC standard across dilutions differing by approximately 16%. The effect of chemical synergisms and antagonisms on human olfactory response magnitudes was assessed by altering the individual concentration of nine compounds in artificial swine odor over a twofold concentration range while maintaining the other 18 components at a constant concentration. A synergistic olfactory response was observed when the air concentration of acetic acid was increased relative to the concentration of other VOC odorants in the standard. An antagonistic olfactory response was observed when the air concentration of 4-ethyl phenol was increased relative to the other VOC odorants in the standard. The collective odorant responses for nine major VOCs associated with swine odor were used to develop an olfactory prediction model to estimate human odor response magnitudes to swine manure odorants through measured air concentrations of indicator VOCs. The results of this study show that direct multicomponent analysis of VOCs emitted from swine effluent can be applied toward estimating perceived odor intensity.  相似文献   
426.
The physical chemical equations relating solubility to octanol water partition coefficient are presented and used to develop a new correlation between these quantities which includes a melting point (fugacity ratio) correction. The correlation is satisfactory for 45 organic compounds but it is not applicable to organic acids. When applied to very high molecular weight (> 290) compounds the correlation is less satisfactory; either it is believed because the data are inaccurate or because the tendency for these compounds to partition into organic phases is less than expected. This may have profound environmental implications.  相似文献   
427.
Cysts of the planktonic oligotrich ciliate Strombidium conicum were isolated from sediment samples, collected monthly in Onagawa Bay on the northeastern Pacific coast of Japan, and incubated under laboratory conditions of 20 °C in light. The excystment ability changed seasonally in a regular manner, which was demonstrated by alternation of three characteristic seasonal patterns of the cumulative excystment curve, i.e., rapid, delayed and transitional patterns. While the transitional excystment pattern was characteristic during the period from spring to midsummer, the rapid pattern occurred during late summer to early winter. The pattern changed again to transitional in midwinter and finally returned to the delayed pattern in late winter or early spring. We suggest that mud temperature was the most determinative factor of this seasonality in excystment ability. Such synchronization of annual excystment helps this species to proliferate rapidly and maintain the vegetative part of the population in the upper water column for a longer period of time where it is subjected to the dispersion process due to water movement. Received: 17 September 1996 / Accepted: 18 November 1996  相似文献   
428.
M. Sato  Y. Masuda 《Marine Biology》1997,130(2):163-170
Genetic divergence among ten populations of small- and large-egg forms of the brackish-water polychaete Hediste japonica complex was investigated on 14 isozyme loci by electrophoretic analysis. The two forms were distinguishable by complete allele substitutions at five loci, resulting in high genetic differentiation (Nei's D: 0.533 to 0.662). No genetic evidence of hybridization between the two forms was detected in sympatric populations in three rivers. These results indicate that the two forms are reproductively isolated, clearly showing that the two forms are distinct species. The genetic differentiation among populations was higher in the large-egg form (D: 0.005 to 0.111, G ST: 0.435) than that in the small-egg form (D: 0.000 to 0.001, G ST: 0.020). This genetic difference between the two forms seems to be attributable to a difference in their life histories. The average expected heterozygosity was low in populations of both the large-egg form (0.005 to 0.068) and the small-egg form (0.014 to 0.038) in comparison with other marine invertebrates. Received: 11 April 1997 / Accepted: 8 September 1997  相似文献   
429.
430.
The current world population is 6 billion people. Even if we adopted a worldwide policy resulting in only 2.1 children born per couple, more than 60 years would pass before the world population stabilized at approximately 12 billion. The reason stabilization would take more than 60 years is the population momentum – the young age distribution – of the world population. Natural resources are already severely limited, and there is emerging evidence that natural forces already starting to control human population numbers through malnutrition and other severe diseases. At present, more than 3 billion people worldwide are malnourished; grain production per capita has been declining since 1983; irrigation per capita has declined 12% during the past decade; cropland per capita has declined 20% during the past decade; fish production per capita has declined 7% during the past decade; per capita fertilizer supplies essential for food production have declined 23% during the past decade; loss of food to pests has not decreased below 50% since 1990; and pollution of water, air, and land has increased, resulting in a rapid increase in the number of humans suffering from serious, pollution-related diseases. Clearly, human numbers cannot continue to increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号