首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1425篇
  免费   6篇
  国内免费   42篇
安全科学   45篇
废物处理   86篇
环保管理   142篇
综合类   240篇
基础理论   342篇
环境理论   1篇
污染及防治   393篇
评价与监测   100篇
社会与环境   118篇
灾害及防治   6篇
  2023年   13篇
  2022年   45篇
  2021年   9篇
  2020年   6篇
  2019年   14篇
  2018年   54篇
  2017年   22篇
  2016年   28篇
  2015年   49篇
  2014年   35篇
  2013年   119篇
  2012年   36篇
  2011年   63篇
  2010年   61篇
  2009年   72篇
  2008年   71篇
  2007年   60篇
  2006年   45篇
  2005年   43篇
  2004年   77篇
  2003年   65篇
  2002年   43篇
  2001年   102篇
  2000年   43篇
  1999年   24篇
  1998年   16篇
  1997年   12篇
  1996年   9篇
  1995年   20篇
  1994年   7篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1987年   7篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1980年   6篇
  1975年   8篇
  1974年   10篇
  1973年   7篇
  1972年   12篇
  1971年   5篇
  1966年   5篇
  1965年   5篇
  1959年   5篇
  1957年   5篇
排序方式: 共有1473条查询结果,搜索用时 31 毫秒
961.
土地细碎化是与土地规模经营理念相背离的一种土地形态,细碎化的土地经营模式会造成土地利用效率下降、粮食减产以及景观美观度降低等一系列问题。目前,土地细碎化程度的衡量多通过细碎度表征,但尚无统一标准,且主要针对农用地。以江苏东海县为例,首先结合景观指数与主成分分析,分别计算耕地、基础设施用地、居民点用地以及生态用地的细碎度,再通过系统聚类,分析不同地类细碎度组合的地域分异特征。结果显示:不同用地类型的细碎度是自然、社会经济的综合影响结果,耕地细碎度与居民点细碎度有着较显著的正相关关系,与生态用地细碎度有着较显著的负相关关系,基础设施用地细碎度和居民点细碎度存在一定的正相关关系,与生态用地细碎度存在一定的负相关关系,土地细碎度基于不同自然、社会经济条件,其分区也有着特定的区位特征。探讨不同用地类型细碎度间的关联性及空间分异特征可以为土地利用、经济发展以及景观改善等提供科学的引导  相似文献   
962.
Regional patterns of soil organic carbon stocks in China   总被引:8,自引:0,他引:8  
Soil organic carbon (SOC) is of great importance in the global carbon cycle. Distribution patterns of SOC in various regions of China constitute a nation-wide baseline for studies on soil carbon changes. This paper presents an integrated and multi-level study on SOC stock patterns of China, and presents baseline SOC stock estimates by great administrative regions, river watersheds, soil type regions and ecosystem. The assignment is done by means of a recently completed 1: 1,000,000 scale soil database of China, which is the most detailed and reliable one in China at the present time. SOC densities of 7292 soil profiles collected across China in the middle of the 1980s were calculated and then linked to corresponding polygons in a digital soil map, resulting in a SOC Density Map of China on a 1: 1,000,000 scale, and a 1 km x 1 km grid map. Corresponding maps of administrative regions, river watersheds, soil types (ST), and ecosystems in China were also prepared with an identical resolution and coordinate control points, allowing GIS analyses. Results show that soils in China cover an area of 9.281 x 10(6)km(2) in total, with a total SOC stock of 89.14 Pg (1 Pg=10(15)g) and a mean SOC density of 96.0 t C/ha. Confidence limits of the SOC stock and density in China are estimated as [89.23 Pg, 89.08 Pg] and [96.143 t C/ha, 95.981 t C/ha] at 95% probability, respectively. The largest total SOC stock (23.60 Pg) is found in South-west China while the highest mean SOC density (181.9 t C/ha) is found in north-east China. The total SOC stock and the mean SOC density in the Yangtze river watershed are 21.05 Pg and 120.0 t C/ha, respectively, while the corresponding figures in the Yellow river watershed are 8.46 Pg and 104.3 t C/ha, respectively. The highest total SOC stocks are found in Inceptisols (34.39 Pg) with SOC density of 102.8 t C/ha. The lowest and highest mean SOC densities are found on Entisols (28.1 t C/ha), and on Histosols (994.728.1 t C/ha), respectively. Finally, the total SOC stock in shrub and forest ecosystem classes are 25.55 and 21.50 Pg, respectively; the highest mean SOC density (209.9 t C/ha) was recorded in the wetland ecosystem class and the lowest (29.0 t C/ha) in the desert ecosystem class. Among five forest ecosystem types, Evergreen conifer forest stores the highest SOC stock (6.81 Pg), and Deciduous conifer forest shows the highest SOC density (225.9 t C/ha). Figures of SOC stocks stratified by Administrative regions, river watersheds, soil types and ecosystem types presented in the study may constitute national-wide baseline for studies of SOC stock changes in various regions in the future.  相似文献   
963.
Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03–0.25 h?1. The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h?1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.  相似文献   
964.
Many physical, chemical, and biotic stresses always threaten plants during their growth and development. Using the genome editing technique is a good strategy to improve plant characteristics. CRISPR/Cas (clustered regulatory interspaced short palindromic repeats / CRISPR-associated protein), the adaptive and heritable immune system of prokaryotes, is a genome editing technique newly developed during recent years. At present, the type II CRISPR / Cas9 system is most widely used. Many plants, such as Arabidopsis thaliana, tobacco, soybean, tomato, potato, rice, wheat, maize, sorghum, petunia, banana, sweet orange, apple, poplar, and Marchantia polymorpha, have been edited successfully for stress tolerance, delay of fruit ripening, herbicide resistance, and disease resistance, etc. This system is achieved by the formation of nuclease Cas9 and crRNA: tracrRNA (CRISPR-derived RNA:trans-activating RNA) complex. Further studies about the effect of the promoters of Cas9 and gRNA and the number of gRNA targets on gene editing efficiency have been discussed. © 2018 Science Press. All rights reserved.  相似文献   
965.
The objective of this study was to investigate the soil nitrogen components of four native artificial plantations at the western edge of the Sichuan Basin. Soil samples from two layers (0-20 cm and 20-40 cm) were collected from 4 plantations (Cryptomeria fortunei, Michelia wilsonii, Phoebe zhennan, and Quercus acutissima) during March, June, September, and December 2015 at the western edge of Sichuan Basin, to perform a comparative analysis on seasonal dynamics. Soil ammonium, nitrate, microbial biomass nitrogen, and environmental factors were synchronously monitored. The results showed that soil inorganic nitrogen was mainly the result of nitrate. The components of labile soil nitrogen showed significant seasonal dynamics. Soil ammonium during the growing season (June and September) was higher than that during the non-growing season (March and December), but soil nitrate, microbial biomass nitrogen, and inorganic nitrogen showed the opposite pattern. Labile nitrogen components in the 0-20 cm layer were generally higher than those in the 20-40 cm layer. Labile soil nitrogen was significantly affected by forest type, which was dependent on season and soil layer. In general, there were significant correlations between the soil nitrogen pools and labile soil nitrogen and the environmental factors, including soil temperature, water content, and monthly rainfall. In conclusion, the variation of labile soil nitrogen was influenced more by season than forest type or soil layer. Compared to the biological effects of tree species, the environmental factors had a stronger effect on labile soil nitrogen. © 2018 Science Press. All rights reserved.  相似文献   
966.
As the typical planting pattern of winter wheat in the dry highlands of the Loess Plateau, ridge mulching-furrow planting (RMFP) has played an important role in fertilizer efficiency of different fertilizers, and the differences in fertilizer efficiency further influence the diversity of the structure of soil microbial communities. The effects of different fertilization practices on winter wheat yield formation, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil microbial biomass phosphorus (SMBP) were investigated by field experiments during 2014-2016 in the winter wheat growing region of the dry highlands in southern Shanxi. The treatments included four groups, farmer fertilization (FF), monitoring fertilization (MF), monitoring fertilization combined application of manure (MFM), and monitoring fertilization combined application of bio-organic fertilizer (MFB). Results showed a significant increase in winter wheat yield by optimized and balanced fertilization, and the grain yield of MFB was highest among all treatments, with a value of 4 107-5 400 kg/hm2, which was 14.5%-23.2% (P < 0.05) higher than that of FF. The effects of different fertilization treatments on the winter wheat yield formulation mainly depended on spike number; however, no effect was found on kernel number per spike and 1 000-grain weight. Soil microbial biomass was affected by both growth period and fertilization patterns, i.e., the content of SMBC from jointing to flowering stage was highest during the winter wheat growth period, whereas the maximum values of SMBN and SMCP were found during the jointing stage. Changes in the rates of SMBC, SMBN, and SMBP during the entire growth period were less than 50%; however, the average contribution rate of optimized fertilization on SMBC, SMBN, and SMBP reached 90%. Compared to single chemical fertilizer applications, the combined application chemical fertilizer and manure or bio-organic fertilizer significantly improved the contents of SMBC, SMBN, and SMBP; however, the contents of SMBC and SMBN between MFM and MFB had no significant difference, whereas the SMBP of MFB was 19.8%-47.1% (P < 0.05) higher than that of MFM owing to the effect of mixed phosphorus bacteria. The soil microbial biomass C/N and C/P of the different treatments were 6.9-9.8 and 14.4-41.0, respectively, and maximum values occurred during the flowering stage. Given the above, the combined application of reasonable chemical fertilizer and bio-organic fertilizer can effectively improve the winter wheat yield and soil microbial biomass under RMFP cultivation in the dry highlands of the Loess Plateau. © 2018 Science Press. All rights reserved.  相似文献   
967.
Furfural is a toxic metabolic inhibitor that is created during the conversion of lignocellulose to produce fuel, which can retard fermentation and increase production costs. thus, it is important for lignocellulosic conversion that the ability of the strain to resist furfural stress be improved. A cellulose-degrading bacterium BREC-11 with tolerance to furfural was isolated from the intestinal tract of Omphisa fuscidentalis hampson larvae via the addition of furfural in the medium. Based on analyses of morphological observations, physiological and biochemical characterizations, and 16S rDNA sequences, strain BREC-11 was shown to represent a member of the genus Bacillus and was named B. siamensis BREC-11. to study the tolerance concentration of strain BREC-11, a wide range of furfural formaldehyde concentrations were tested and strain BREC-11 was shown to grow in the mineral medium containing furfural up to 3.5 g/L. Cellulase activity of strain BREC-11 was determined at the tolerable concentration of 3.5 g/L furfural after incubation at 30 ℃ and 150 r/min for 2 days. Results indicated that filter paper enzyme, CMC-Na enzyme, and β-glucosidase activity was 0.1 U/mL, 0.21 U/mL, and 0.07 U/mL, respectively. BREC-11 is a cellulose-degrading bacterium with resistance to furfural, which has potential application in future bio-refinery processes. © 2018 Science Press. All rights reserved.  相似文献   
968.
A single chamber microbial fuel cell (MFC) with three-dimensional electrodes packed bed carbon felts was developed to treat domestic wastewater while simultaneously generating electricity. The influence of batch and continuous operation mode on treatment effectiveness and electricity production of the MFC was investigated to provide a reference for the application of the MFC. The MFC with a total working volume of 1 440 mL was operated in the fed-batch mode for 5 d repeatedly three times, and then shifted to the continuous mode. During the testing of the continuous mode, wastewater was continuously pumped into the anode compartment at a flow rate of approximately 0.2 mL/min, resulting in a hydraulic retention time of 5 d. During the batch test, the MFC obtained 91.1% chemical oxygen demand (COD) and 98.2% NH4 +-N removal, which accorded with the first criteria specified in the discharge standard of pollutants for municipal wastewater treatment plants in China (GB18918-2002). A maximum power density of 27.88 mW/m3 was achieved at a 51 Ω external resistor. During the continuous test, the COD removal efficiencies ranged from 83.2% to 97.4%. The concentration of NH4 +-N gradually decreased within 5 d and was then maintained below 9.45 mg/L, thus an enhanced removal performance of NH4 +-N was acquired. However, a low removal efficiency of total nitrogen was observed owing to the accumulation of NO3 --N in the effluent since day 11. Additionally, the MFC continually generated electricity with a maximum power density of 582.5 mW/m3 and average output voltage of 0.087 7 V during the stable period in the continuous operation mode. Moreover, 16S rRNA gene high-throughput sequencing showed that Thauera sp., Saprospiraceae-UN sp., and OPB56-UN sp. were identified as dominant populations. The results suggested that the organic matter associated with power generation was constantly utilized by the microorganisms in the reactor, which caused an excellent electricity generation performance during the continuous test. Therefore, the continuous operation mode could improve the low output voltage phenomenon in the MFC. Thauera sp., as a type of nitrate-reducing bacteria, was enriched in the autotrophic denitrifying microbial communities; therefore, bio-enrichment with denitrifying bacteria such as Thauera sp. could decrease the concentration of NO3 --N in the effluent during the continuous operation mode, which is expected to be an innovation for improvement of wastewater treatment. © 2018 Science Press. All rights reserved.  相似文献   
969.
970.
Plant biomass partitioning is an important driver of whole-plant net carbon gain, as biomass allocation could directly affect plant's future growth and reproduction. Alpine meadow in the northwestern Sichuan was impressed by the abundant community structure and species diversity. This study on biomass allocation pattern of different functional types and lifeforms might help understand plant life-history strategy of alpine meadow plants. We investigated 72 dominant herbaceous species for their compartments, biomass, and morphological traits during 2012-2014. These plants were sampled from natural grassland, disturbed grassland, and wintergreen grassland; they belonged to three functional types (grass, sedge, and forb) and two lifeforms (annual and perennial). The scaling relationships between functional traits of these plants were analyzed using Model type II regression method to estimate the parameters of the allometric equations. (1) Biomass allocation proportion of components significantly differed among grasses, sedges, and forbs owing to phylogeny: grasses had the highest stem biomass percentage, sedges had higher root biomass percentage, and forbs had higher leaf biomass percentage, but the scaling relationships were not significantly different, and isometric scaling was noted between biomass components for the three functional types. (2) Moreover, plant lifeforms affected the biomass allocation proportion of components, owing to the shorter or longer turnover rate and investment strategy between annual and perennial species. Annuals allocated more biomass to the stem and reproduction organs, but perennials invested more biomass to the leaves and roots. (3) In addition, plants from different grassland types differed in both biomass and morphology traits. Moreover, forbs from natural grassland and wintergreen grassland had higher leaf and reproductive biomass, but those from disturbed grasslands had higher stem biomass. Our results suggest that the functional type and lifeform decide the inherent scaling relationships between components of plants, but anthropogenic disturbance significantly impacted the quantity of component biomass. This study has important theoretical and practical significance to understand the response of alpine plants to climate change and anthropogenic disturbance as well as to help in the scientific management of alpine meadow. © 2018 Science Press. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号