首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3411篇
  免费   266篇
  国内免费   1230篇
安全科学   301篇
废物处理   192篇
环保管理   286篇
综合类   2121篇
基础理论   523篇
环境理论   1篇
污染及防治   958篇
评价与监测   167篇
社会与环境   206篇
灾害及防治   152篇
  2024年   11篇
  2023年   66篇
  2022年   214篇
  2021年   192篇
  2020年   170篇
  2019年   138篇
  2018年   159篇
  2017年   194篇
  2016年   163篇
  2015年   186篇
  2014年   263篇
  2013年   350篇
  2012年   296篇
  2011年   332篇
  2010年   255篇
  2009年   243篇
  2008年   230篇
  2007年   176篇
  2006年   237篇
  2005年   151篇
  2004年   103篇
  2003年   85篇
  2002年   102篇
  2001年   87篇
  2000年   97篇
  1999年   76篇
  1998年   55篇
  1997年   50篇
  1996年   37篇
  1995年   48篇
  1994年   24篇
  1993年   32篇
  1992年   22篇
  1991年   19篇
  1990年   9篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1973年   1篇
排序方式: 共有4907条查询结果,搜索用时 281 毫秒
341.
纳米零价铁的制备及其去除水中对氯硝基苯的研究   总被引:6,自引:2,他引:4  
通过FeSO4与KBH4反应,利用液相还原法制备纳米零价铁颗粒(NZVI),用XRD、SEM和BET对其性能进行表征。在常温常压下利用纳米铁还原废水中的对氯硝基苯(p-CNB),探讨了反应条件对还原率的影响。结果表明,制备过程中碱性物质(NaOH)的添加可以明显减小颗粒粒径,增大比表面积,提高纳米铁还原反应的效率。NZVI对于对氯硝基苯有很好的去除效果,NZVI用量、p-CNB初始浓度和pH值均对其去除效率产生影响。在纳米铁投加量为1 g/L,pH=2的条件下,添加NaOH的纳米铁能在120 min内将质量浓度为50 mg/L的对氯硝基苯基本完全降解,降解率为98.8%。此外,还对NZVI还原对氯硝基苯的机理进行了初步探讨。  相似文献   
342.
混凝与Fenton联用处理垃圾渗滤液的效能及成本   总被引:3,自引:2,他引:1  
为对混凝/Fenton工艺与Fenton/混凝工艺处理垃圾渗滤液的效果和成本进行比较,分别对年轻渗滤液和老龄渗滤液原液按照混凝/Fenton工艺与Fenton/混凝工艺2种技术路线进行处理。实验结果表明,Fenton试剂对年轻垃圾渗滤液和老龄垃圾渗滤液COD去除率最高的反应条件为pH=3.5、H2O2和Fe2+的摩尔比为6、H2O2和渗滤液原液的COD质量比为3、反应时间4 h;在PAC与渗滤液原液的COD质量比为0.6时,PAC混凝对渗滤液原液的COD去除率最高。在对渗滤液COD去除率最高的Fenton反应和PAC混凝反应条件下,混凝/Fenton工艺对年轻渗滤液和老龄渗滤液的COD去除率分别为90.56%和86.56%;Fenton/混凝工艺对年轻渗滤液和老龄渗滤液的COD去除率分别为89.99%和85.99%,2种技术路线对渗滤液COD的去除率相差不大,但先PAC混凝后Fenton氧化工艺比先Fenton后混凝工艺每t节省62.6元,是更优化的渗滤液处理工艺。  相似文献   
343.
TiO_2/EP光催化降解水体中微污染磺胺嘧啶的研究   总被引:1,自引:1,他引:0  
制备了膨胀珍珠岩(EP)为载体的TiO2催化剂(TiO2/EP),对使用较为广泛的抗生素磺胺嘧啶(SDZ)进行了光催化降解研究,探讨了TiO2的负载量、溶液的初始浓度、初始pH、无机离子(HCO3-、SO42-和Cl-)和腐殖酸(HA)对SDZ降解效果的影响。结果表明:SDZ的光催化降解符合一级反应动力学方程;当TiO2最佳负载量为20 wt%,SDZ浓度为5 mg/L,pH=6.7,紫外光照射强度为1 000μW/cm2,反应时间为45 min时,SDZ的降解率达到96%;HCO3-在低浓度时能促进SDZ的光催化降解,高浓度时促进作用不明显;SO42-和Cl-对SDZ的光催化降解有轻微的抑制作用;HA对SDZ光催化降解有显著的抑制作用,浓度越高,抑制作用越强。UV-TiO2/EP是一种去除水体中微污染SDZ的有效方法。  相似文献   
344.
剩余污泥减量化工艺条件优化研究   总被引:2,自引:1,他引:1  
运用超声处理连续流活性污泥系统中不同种类的污泥,并将其回流至原系统中,研究其剩余污泥减量化效果。按正交实验设计并进行试验,确定最优工艺条件。结果表明:当声能密度为0.6 W/mL,作用时间为5 min,超声污泥为混合污泥,回流比为7∶120时,减量效果最佳。且在该条件下经一周期的运行,污泥减量效果达到96.24%,COD由进水的830 mg/L降至44 mg/L,NH4+-N和TN分别由进水的62.43 mg/L和103.19 mg/L,降解到2.31 mg/L和6.52 mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级排放标准。  相似文献   
345.
To study the Pu concentration and isotope ratio distributions present in China, the 239+240Pu total activities and 240Pu/239Pu atom ratios in core soil samples from Hubei Province in central China were investigated using Accelerator Mass Spectrometry (AMS). The activities ranged from 0.019 to 0.502 mBq g−1 and the 239+240Pu inventories of 45 and ∼55 Bq m−2 agree well with that expected from global fallout. The 240Pu/239Pu atom ratios in the soil ranged from 0.172 to 0.220. The ratios are similar to typical global fallout values. Hence, any close-in fallout contribution from the Chinese nuclear weapons tests, mainly conducted in the 1970s, must have either been negligible or had a similar 240Pu/239Pu ratio to that of global fallout. The top 10 cm layer of the soil contributes ∼90% of the total inventory and the maximum concentrations appeared in the 2-4 cm or 4-6 cm layers. It is suggested that climatic conditions and organic content are the two main factors that affect the vertical migration of plutonium in soil.  相似文献   
346.
Anthropogenic Pu isotopes are important geochemical tracers for sediment studies. Their distributions and sources in the water columns as well as the sediments of the North Pacific have been intensively studied; however, information about Pu in the Southeast Asian seas is limited. To study the isotopic composition of Pu, and thus to identify its sources, we collected sediment core samples in the South China Sea and the Sulu Sea during the KH-96-5 Cruise of the R/V Hakuho Maru. We analysed the activities of 239+240Pu and the atom ratios of 240Pu/239Pu using isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS). The 240Pu/239Pu atom ratios in the sediments of both areas (inventory weighted mean: 0.251 for the South China Sea and 0.280 for the Sulu Sea) were higher than the global fallout value (0.178 ± 0.019), suggesting the existence of Pu from the Pacific Proving Grounds in the North Pacific. Low inventories of 239+240Pu in sediments were observed in the South China Sea (3.75 Bq/m2) and the Sulu Sea (1.38 Bq/m2). Most of the Pu input is still present in the water column. Scavenging and benthic mixing processes were considered to be the main processes controlling the distribution of Pu in the deep-sea sediments of both study areas.  相似文献   
347.
348.
The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.  相似文献   
349.
Degradation of bisphenol A (BPA) in aqueous solution was studied with high-efficiency sulfate radical (SO4 ), which was generated by the activation of persulfate (S2O8 2?) with ferrous ion (Fe2+). S2O8 2? was activated by Fe2+ to produce SO4 , and iron powder (Fe0) was used as a slow-releasing source of dissolved Fe2+. The major oxidation products of BPA were determined by liquid chromatography-mass spectrometer. The mineralization efficiency of BPA was monitored by total organic carbon (TOC) analyzer. BPA removal efficiency was improved by the increase of initial S2O8 2? or Fe2+ concentrations and then decreased with excess Fe2+ concentration. The adding mode of Fe2+ had significant impact on BPA degradation and mineralization. BPA removal rates increased from 49 to 97 % with sequential addition of Fe2+, while complete degradation was observed with continuous diffusion of Fe2+, and the latter achieved higher TOC removal rate. When Fe0 was employed as a slow-releasing source of dissolved Fe2+, 100 % of BPA degradation efficiency was achieved, and the highest removal rate of TOC (85 %) was obtained within 2 h. In the Fe0–S2O8 2? system, Fe0 as the activator of S2O8 2? could offer sustainable oxidation for BPA, and higher TOC removal rate was achieved. It was proved that Fe0–S2O8 2? system has perspective for future works.  相似文献   
350.
The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号