Remediation of nonaqueous phase liquids (NAPLs) by conventional pump-and-treat methods (i.e., water flushing) is generally considered to be ineffective due to low water solubilities of NAPLs and to mass-transfer constraints. Chemical flushing techniques, such as surfactant flushing, can greatly improve NAPL remediation primarily by increasing the apparent solubility of NAPL contaminants. NAPLs at hazardous waste sites are often complex mixtures. However, the equilibrium and nonequilibrium mass-transfer characteristics between NAPL mixtures and aqueous surfactant solutions are not well understood. This research investigates the equilibrium solubilization behavior of two- and three-component NAPL mixtures (containing akylbenzenes) in biosurfactant solutions. NAPL solubilization is found to be ideal in water (i.e., obeys Raoult's Law), while solubilization in biosurfactant solutions was observed to be nonideal. Specifically, the relatively hydrophobic compounds in the mixture experienced solubility enhancements that were greater than those predicted by ideal enhanced solubilization theory, while the solubility enhancements for the relatively hydrophilic compounds were less than predicted. The degree of nonideality is shown to be a nonlinear function of the NAPL-phase mole fraction. Empirical relationships based on the NAPL-phase mole fraction and/or micelle-aqueous partition coefficients measured in single-component NAPL systems are developed to estimate values for the multicomponent partition coefficients. Empirical relationships that incorporate both the NAPL-phase mole fraction and single-component partition coefficients yield much improved estimates for the multicomponent partition coefficient. 相似文献
The disposal of organic waste by the biocomposting of black soldier fly larvae (BSFL) has drawn broad attention. However, the discrepancies in heavy metal immobilization between BSFL biocomposting with different inoculation densities and aerobic composting need to be further researched. In this study, BSFL with inoculation densities of 0.08%, 0.24% and 0.40% was added to swine manure to investigate its influence on heavy metal bioaccumulation and bioavailability. The physicochemical properties, BSFL growth performance and amino acid contents were measured. The results showed that the germination index, total prepupal yield and bioavailable fraction removal rate (%) of Cr and Pb at an inoculation density of 0.40% of BSFL were the highest among all of the BSFL biocomposting groups. Although the bioaccumulation factor and heavy metal (Cd, Cr, Cu and Zn) concentrations of the BSFL body from swine manure with inoculation densities of 0.24% and 0.40% of BSFL were similar, the BSFL inoculation density of 0.40% had the best absorption effect on these heavy metals in terms of total prepupal yield. Therefore, this study provides a basis for exploring the optimal inoculation density of BSFL biocomposting to reduce the harmful effects of heavy metals in swine manure.
Environmental Science and Pollution Research - Mercury injection test shows that wallpaper is a porous building material with a complex fractal mass transfer channel. Therefore, fractional... 相似文献
Environmental Science and Pollution Research - In this study, corn stalk was modified by manganese (Mn) before (MBC1) and after (MBC2) pyrolysis at different temperatures (400~600 °C)... 相似文献