首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2239篇
  免费   17篇
  国内免费   91篇
安全科学   106篇
废物处理   210篇
环保管理   280篇
综合类   293篇
基础理论   392篇
环境理论   1篇
污染及防治   783篇
评价与监测   193篇
社会与环境   74篇
灾害及防治   15篇
  2023年   11篇
  2022年   33篇
  2021年   36篇
  2020年   12篇
  2019年   41篇
  2018年   70篇
  2017年   58篇
  2016年   78篇
  2015年   54篇
  2014年   67篇
  2013年   178篇
  2012年   123篇
  2011年   143篇
  2010年   96篇
  2009年   129篇
  2008年   134篇
  2007年   144篇
  2006年   128篇
  2005年   114篇
  2004年   105篇
  2003年   97篇
  2002年   88篇
  2001年   62篇
  2000年   35篇
  1999年   24篇
  1998年   20篇
  1997年   23篇
  1996年   16篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   19篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2347条查询结果,搜索用时 15 毫秒
871.
Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO3 and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO3 as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO3 dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO3 forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO3 precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.  相似文献   
872.
Lab scale mulch biofilm barriers were constructed and tested to evaluate their performance for preventing the migration of aqueous and surfactant solubilized PAHs. The spatial distribution of viable PAH degrader populations and resultant biofilm formation were also monitored to evaluate the performance of the biobarrier and the prolonged surfactant effect on the PAH degrading microorganism consortia in the biobarrier. Sorption and biodegradation of PAHs resulted in stable operation of the system for dissolved phenanthrene and pyrene during 150 days of experimentation. The nonionic surfactant could increase the solubility of phenanthrene and pyrene significantly. However, the biobarrier itself couldn't totally prevent the migration of micellar solubilized phenanthrene and pyrene. The presence of surfactant and the resultant highly increased phenanthrene or pyrene concentration didn't appear to cause toxic effects on the attached biofilm in the biobarrier. However, the presence of surfactant did change the structural composition of the biofilm.  相似文献   
873.
Dissolved organic matter with multi-peak fluorophores in landfill leachate   总被引:8,自引:0,他引:8  
Lu F  Chang CH  Lee DJ  He PJ  Shao LM  Su A 《Chemosphere》2009,74(4):575-582
Dissolved organic matter (DOM) sampled from municipal landfill leachate of different ages with/without anoxic or aerobic treatment, was intensively fractionated via size exclusion chromatography (SEC) and hydrophobic resins, and was studied with fluorescence excitation and emission matrix (EEM). Six fluorophores with multiple EEM peaks (fluorophore A-F) were identified based on the collected EEM spectra and validated by bi-variate analysis, principal component analysis, and parallel factor analysis, as follows (excitation wavelength Ex and emission wavelength Em): (Ex 240, 310, 360 nm, Em 460 nm), (Ex 220, 280 nm, Em 340 nm), (Ex 220, 270 nm, Em 300 nm), (Ex 220, 280 nm, Em 360 nm), (Ex 230, 320 nm, Em 420 nm) and (Ex 220, 310 nm, Em 400 nm). The spectral characteristics of these fluorophores were discussed using fractional EEM and apparent molecular weight (AMW) data obtained via SEC analysis. The triple peak flurophore A was pointed at a hydrophobic acid or hydrophobic neutral compound with a pyrenyl functional group of AMW 2500-3500 Da, which displayed an excitation wavelength at 360 nm and a fluorescence intensity ratio of 6.70(+/-1.79):1.70(+/-0.41):1 (fluorescent intensities of Ex 240:Ex 310:Ex 360 nm at Ex 460 nm). This compound is observed to be refractory in landfilling or in anoxic/aerobic treatments, and is specific to this leachate contamination. This paper revealed that the coupling of SEC and EEM can be useful to track the fluorescent DOM fraction in landfill leachate.  相似文献   
874.
Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NOx), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr?1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000–2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ~55 mW m?2 (23–87 mW m?2, 90% likelihood range), which was 3.5% (range 1.3–10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005–78 mW m?2 (38–139 mW m?2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2–14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7–3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0–4.0 over the 2000 value, representing 4–4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.  相似文献   
875.
In this study, we investigated the characteristics of heavy metal contamination in road dusts collected from industrial areas in Korea. A total of 12 sampling sites, including nine sites in three different industrial complexes (ICs), two IC vicinity areas and one background area, were selected for this study. The collected road dusts were divided into four categories. The heavy metals (Cd, Cu, Pb, Zn, and Ni) were extracted from the road dust by an aqua regia extraction method and analyzed by atomic absorption spectrometry. The highest concentrations of Cd, Cu, and Pb were identified in road dusts from areas near the non-ferrous metal IC, followed by those from the petrochemical IC. The petrochemical IC and the mechanical/shipbuilding IC showed the highest concentrations of Ni and Zn in their road dusts, respectively. The concentration of heavy metals in the road dusts collected from the IC vicinity areas, even those located in a rural environment, were very high. The concentration of heavy metals increased with decreasing particle size of the road dusts. This study also analyzed the mobility of the heavy metals in the road dusts using partial sequential extraction with the Tessier procedure. The order of mobility identified, based on exchangeable and carbonate fractions of the heavy metals, was Cd > Zn > Pb > Cu > Ni.  相似文献   
876.
A previous study on PM2.5 carbonaceous aerosols measured with the thermal optical reflectance (TOR) method in fourteen Chinese cities is extended by subdividing total EC into char-EC and soot-EC. Average char-EC concentrations show great differences between the fourteen cities and between winter and summer periods, with concentrations of 8.67 and 2.41 μg m?3 in winter and summer, respectively. Meanwhile spatial and seasonal soot-EC variations are small, with average concentrations of 1.26 and 1.21 μg m?3 in winter and summer, respectively. Spatial and temporal distributions of char-EC, similar to EC, are mainly influenced by local fuel consumption, as well as the East Asian monsoon and some meteorological factors such as the mixing height and wet precipitation. The small spatial and seasonal variation of soot-EC is consistent with its regional-to-global dispersion, which may suggest that soot carbon is not local carbon, but regional carbon. Char-EC/soot-EC ratios show summer minimum and winter maximum in all cities, which is in good agreement with the difference in source contributions between the two periods. As OC/EC ratio is affected by the formation of the secondary organic aerosol (SOA), char-EC/soot-EC ratio is a more effective indicator for source identification of carbonaceous aerosol than previously used OC/EC ratio.  相似文献   
877.
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2, total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5 x 10(15) to 5 x 10(15) particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of approximately 90% for SO2 and particle mass EIs and approximately 60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of approximately 5 as compared with JP-8.  相似文献   
878.
Lognormal distribution is often used as a default model for regression analysis of particle size distribution (PSD) data; however, its goodness-of-fit to particle matter (PM) sampled from animal buildings and its comparison to other PSD models have not been well examined. This study aimed to evaluate and to compare the goodness-of-fit of six PSD models to total suspended particulate matter (TSP) samples collected from 15 animal buildings. Four particle size analyzers were used for PSD measurement. The models' goodness-of-fit was evaluated based on adjusted R2, Akaike's information criterion (AIC), and mean squared error (MSE) values. Results showed that the models' approximation of measured PSDs differed with particle size analyzer. The lognormal distribution model offered overall good approximations to measured PSD data, but was inferior to the gamma and Weibull distribution models when applied to PSD data derived from the Horiba and Malvern analyzers. Single-variable models including the exponential, Khrgian-Mazin, and Chen's empirical models provided relatively poor approximations and, thus, were not recommended for future investigations. A further examination on model-predicted PSD parameters revealed that even the best-fit model of the six could significantly misestimate mean diameter median diameter; and variance. However, compared with other models, the best-fit model still offered the relatively best estimates of mean and median diameters, whereas the best predicted variances were given by the gamma distribution model.  相似文献   
879.
Lee LT  Ito S  Benten H  Ohkita H  Mori D 《Ambio》2012,41(Z2):135-137
A blend of regioregular poly(3-hexylthiophene) (P3HT) and poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2), which has the potential for polymer solar cells application, was prepared for current mode atomic force microscopy (C-AFM) measurements in this study. Phase-separated domains and the local electrical characteristics of P3HT/P(NDI2OD-T2) blends were investigated by the C-AFM.  相似文献   
880.
Zhu FD  Choo KH  Chang HS  Lee B 《Chemosphere》2012,87(8):857-864
The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号