首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12367篇
  免费   203篇
  国内免费   1201篇
安全科学   263篇
废物处理   905篇
环保管理   1416篇
综合类   2717篇
基础理论   3605篇
污染及防治   2593篇
评价与监测   1150篇
社会与环境   1022篇
灾害及防治   100篇
  2024年   18篇
  2023年   100篇
  2022年   196篇
  2021年   192篇
  2020年   170篇
  2019年   127篇
  2018年   1623篇
  2017年   1526篇
  2016年   1330篇
  2015年   330篇
  2014年   246篇
  2013年   257篇
  2012年   718篇
  2011年   1582篇
  2010年   860篇
  2009年   764篇
  2008年   1078篇
  2007年   1372篇
  2006年   157篇
  2005年   107篇
  2004年   94篇
  2003年   149篇
  2002年   186篇
  2001年   100篇
  2000年   73篇
  1999年   59篇
  1998年   63篇
  1997年   44篇
  1996年   52篇
  1995年   36篇
  1994年   38篇
  1993年   21篇
  1992年   20篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1984年   13篇
  1983年   11篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Selection of appropriate residue application method is essential for better use of biomass for soil and environmental health improvement. A laboratory incubation experiment was conducted for 75 days to investigate C and N mineralization of residues of soybean (Glycine max L.), chickpea (Cicer arietinum L.), maize (Zea mays L.), and wheat (Triticum aestivum L.) placed on the soil surface and incorporated into the soil. The residue of soybean and chickpea had a greater decomposition rate than that of maize and wheat, despite of their placements. Higher rate of decomposition of the residue of soybean and chickpea was recorded when it was kept on the soil surface while soil incorporation of residue of wheat and maize resulted in faster decomposition. Therefore, these findings could be used as guidelines for management of crop residue application in farmland to improve soil and environmental quality.  相似文献   
992.
The presented results include decade of monitoring of the Vistula Lagoon waters and have been supplemented by the determination of chlorinated compounds, as well as on concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the sedimentation zone. Monitoring of river waters entering the Polish part of the lagoon and the lagoon waters confirmed the presence of plant protection chemical; the largest contributors has lindane (34%) and DDTtotal (21%); the same as for sediments were dominate lindane (19%) and DDTtotal (14%) within pp-DDT isomer dominate (13%). In the lagoon water, PCDD/Fs were determined within a range of 1.5–5.6 ng dm?3, leading to average toxicity of 0.18?±?0.13 ng TEQ·dm?3. In sediments, their concentrations fell within a range of 22.7–405.7 ng kg?1 dw and the average toxicity of the lagoon sediments was set at 5.00?±?1.98 ng TEQ·kg?1 dw. Both in water and sediments, the greatest share among PCDD/Fs has octa-chlorodibenzodioxin. Due to the hydromorphological conditions of the lagoon, the waters are mixed to the bottom causing the surface layer of sediment to become remobilized—this is suggested as the key factor when it comes to water recontamination and increased access of POPs to marine organisms.  相似文献   
993.
In order to optimize the processes of sampling, monitoring, and management, the initial aim of this paper was to develop a model for the definition and prediction of temporal changes of water quality. In the case of the Morava River Basin (Serbia), the patterns of temporal changes have been recognized by applying different multivariate statistical techniques. The results of the conducted cluster analysis are the indicators of the existence of the three monitoring periods: the low-water, transitional, and high-water periods, which is in accordance with changes in the water flow in the analyzed river basin. A possibility of reducing the initial data set and recognizing the main pollution sources was examined by carrying out the principal component/factor analysis. The results indicate that the natural factor has a dominant influence in temporal groups. In order to recognize the discriminatory water quality parameters, a discriminant analysis (DA) was carried out. Conducting the DA enabled a significant reduction in the data set by the extraction of two parameters (the water temperature and electrical conductivity). Furthermore, the artificial neural network technique was used for testing the possibility of predicting changes in the values of the discriminant factors in the monitoring periods. The reliability of this method for the prediction of temporal variations of both extracted parameters within all temporal clusters has been proven.  相似文献   
994.
Effective water quality management depends on enactment of appropriately designed monitoring programs to reveal current and forecasted conditions. Because water quality conditions are influenced by numerous factors, commonly measured attributes such as total phosphorus (TP) can be highly temporally varying. For highly varying processes, monitoring programs should be long-term and periodic quantitative analyses are needed so that temporal trends can be distinguished from stochastic variation, which can yield insights into potential modifications to the program. Using generalized additive mixed modeling, we assessed temporal (yearly and monthly) trends and quantified other sources of variation (daily and subsampling) in TP concentrations from a multidecadal depth-specific monitoring program on Big Platte Lake, Michigan. Yearly TP concentrations decreased from the late 1980s to late 1990s before rebounding through the early 2000s. At depths of 2.29 to 13.72 m, TP concentrations have cycled around stationary points since the early 2000s, while at the surface and depths ≥?18.29 concentrations have continued declining. Summer and fall peaks in TP concentrations were observed at most depths, with the fall peak at deeper depths occurring 1 month earlier than shallower depths. Daily sampling variation (i.e., variation within a given month and year) was greatest at shallowest and deepest depths. Variation in subsamples collected from depth-specific water samples constituted a small fraction of total variation. Based on model results, cost-saving measures to consider for the monitoring program include reducing subsampling of depth-specific concentrations and reducing the number of sampling depths given observed consistencies across the program period.  相似文献   
995.
Chemical coagulation and adsorption, despite many drawbacks, are actually the main techniques used for the removal of pollutants from aqueous solution; however, these techniques are becoming ineffective due to the exponential increase in the amount and complexity of discharged pollutants; thus, the sludge treatment process became a more complex challenge. The present study focuses on the way to reduce the quantity of sludge formed during the removal of Ridomil Gold, a widely used pesticide-fungicide in agriculture. Results revealed that pre-treatment of initial waste solution by the gliding arc (Glidarc), a source of non-thermal plasma, leads to a significant reduction of the sludge formed during the coagulation treatment. For a 20-min pre-treated effluent Glidarc followed by chemical coagulation, there was a reduction in the volume of sludge formed in the order of 90 and 80% for alum and ferric sulfate coagulants respectively without reducing the performance of pesticide removal. Therefore, there is a positive synergism between treatment by chemical coagulation and plasma treatment. These results suggest that the Glidarc can be an effective solution for the reduction of sludge obtained during treatment by coagulation.  相似文献   
996.
Contamination of the ocean by heavy metals may have ecosystem-wide implications because they are toxic even if present in trace levels, and the relative ease of their bioaccumulation by marine organisms may affect human health, primarily through consumption of contaminated fish. We evaluated metal concentrations in six different popular edible fish species and estimated the potential health risks from consumption of contaminated fish. There was no correlation between fish length and average metal accumulation although the fish species tended to accumulate significantly more Al and Zn (P?<?0.05) than any of the other metals. Significantly higher Mn concentrations were found in fish gills compared to other body parts in all fish species. Bronze seabream, Catface rockcod, and Slinger seabream had significantly higher mean Cr concentration in the liver than in either the tissues or gills. The highest concentration of Zn in fleshy tissue was in Horse mackerel (56.71 μg g?1) followed by Bronze seabream (31.07 μg g?1). Al levels ranged from 5.6 μg g?1 in Atlantic mackerel to 35.04 μg g?1 in Horse mackerel tissue while Cu and Cr concentrations were highest in the tissues of Horse mackerel (6.83 and 1.81 μg g?1, respectively) followed by Santer seabream (3.15; 1.09 μg g?1) and Bronze seabream (3.09; 1.30 μg g?1), respectively. The highest tissue concentration of Mn was detected in Bronze seabream (8.23 μg g?1) followed by Catface rockcod (6.05 μg g?1) and Slinger seabream (5.21 μg g?1) while Pb concentrations ranged from a high of 8.44 μg g?1 in Horse mackerel to 1.09 μg g?1 in Catface rockcod. However, the estimated potential health risks from fish consumption as determined by the target hazard quotient (THQ) and hazard index (HI) were significantly lower than 1, implying that metals were not present in sufficiently high quantities to be of any health and/or food and security concern in the studied fishes.  相似文献   
997.
The study on the spatial distribution of forest soil organic carbon (SOC) is of great significance for accurate assessment of carbon storage in forest ecosystems. In the present study, by taking eight kinds of forest soils of Mountain Lushan in the subtropical area as the research object, we studied the spatial distribution characteristics of SOC in this mountainous area. The results showed that the SOC content and SOC density (SOCD) of main forest types in the Mountain Lushan were lower than the national and the world average. The soil layer of Lushan forest was thinner, and the SOC and active SOC (ASOC) contents of different forest types and SOCDs are the highest in the surface soil. SOCD of the topsoil accounts for 32.64–54.03% of the total SOCD in the whole soil profile. Surface litter is an important source of SOC, and the different vegetation types are the important reason for the different spatial distribution of SOC in this area. Soil SOC contents in the high-altitude forest (bamboo forest, deciduous broadleaf forest, Pinus taiwanensis forest, evergreen-deciduous forest, and coniferous-broadleaved mixed forest) were higher than those in the low-altitude forest (evergreen broadleaf forest, shrub, and Pinus massoniana forest). However, the difference in SOC content exhibited at the altitude gradient is significantly lower than that in SOC in the soil profile. This indicates that both soil depth and elevation are the important factors that affected SOC distribution. However, the influence of soil depth on spatial distribution of SOC may be more complex than that of altitude. Vegetation types and soil properties are the main reasons for the large differences of reduction rate in the contents of SOC and ASOC.  相似文献   
998.
Water pollution is the root cause for many diseases in the world. It is necessary to measure water quality using sensors for prevention of water pollution. However, the related works remain the problems of communication, mobility, scalability, and accuracy. In this paper, we propose a new Supervisory Control and Data Acquisition (SCADA) system that integrates with the Internet of Things (IoT) technology for real-time water quality monitoring. It aims to determine the contamination of water, leakage in pipeline, and also automatic measure of parameters (such as temperature sensor, flow sensor, color sensor) in real time using Arduino Atmega 368 using Global System for Mobile Communication (GSM) module. The system is applied in the Tirunelveli Corporation (Metro city of Tamilnadu state, India) for automatic capturing of sensor data (pressure, pH, level, and energy sensors). SCADA system is fine-tuned with additional sensors and reduced cost. The results show that the proposed system outperforms the existing ones and produces better results. SCADA captures the real-time accurate sensor values of flow, temperature, and color and turbidity through the GSM communication.  相似文献   
999.
Because of the widespread use of silver nanoparticles in commercial products, discharges of municipal wastewater may be a point source of silver in the aquatic environment. We monitored two sites in western Lake Ontario impacted by discharges from wastewater treatment plants serving the City of Toronto. Concentrations of silver were elevated in bottom sediments and suspended sediments collected at the two sites. We also deployed two types of passive samplers in the water column at the two sites, the newly developed Carbon Nanotube Integrative Samplers for monitoring “CNIS-labile” silver and Diffusive Gradient in Thin Film samplers for monitoring “DGT-labile” silver. Results from these passive samplers indicated that the concentrations of silver at the two sites were either below detection limits or were in the ng/L range. In laboratory experiments where the sediments were re-suspended in Milli-Q water, a small proportion of the silver (i.e., <?25%) was labile and partitioned as colloidal or dissolved silver into the liquid phase after agitation. Nanoparticles tentatively identified as silver nanoparticles were detected by single-particle ICP-MS in suspension after agitation of both suspended and bottom sediments. Therefore, there is a need to assess whether silver species, including silver nanoparticles are transported from wastewater treatment plants into sediments in the aquatic environment. This study is unique in focusing on the in situ distribution of silver in natural waters and in sediments that are potentially impacted by urban sources of nanoparticles.  相似文献   
1000.
In this study, the water quality of the Coruh River Basin, which is located in the Eastern Black Sea Region of Turkey, was evaluated. The water quality data measurement results obtained by the State Hydraulic Works 26th Regional Directorate from four different sites over a course of 4 years between the years 2011 and 2014 in the Coruh River Basin were used as the data. In this study, the water quality was evaluated by using the Canadian Council of Ministers of the Environmental Water Quality Index (CCME WQI) method and discriminant analysis (DA). The water quality of the Coruh River Basin was calculated as 30.4 and 71.35 by using the CCME WQI and classified as “poor,” “marginal,” and “fair”. These values show that the water of the Coruh River Basin is degraded and under threat and its overall quality is not close to natural or desired levels. The monitoring sites were divided into two groups by the cluster analysis (CA). DA is a multivariate analysis technique used to divide individuals or objects into different groups and assign them into predetermined groups. As a result of DA, calcium (Ca) and sulfate (SO4) were determined to be significant parameters in the determination of the water quality of the Coruh River Basin. The success of DA depends on the percentage of correct classification. As a result of the analysis, 23% of the parameters in the first measurement point, 69.2% of the parameters in the second and third measurement points, and 76.9% of the parameters in the fourth measurement point were classified correctly. Since the second measurement point is the discharge point of a copper mine, it can be said that the water quality parameters measured may provide accurate results in detecting pollution at this point.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号