首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   2篇
  国内免费   1篇
安全科学   4篇
废物处理   7篇
环保管理   25篇
综合类   80篇
基础理论   49篇
污染及防治   38篇
评价与监测   7篇
社会与环境   14篇
灾害及防治   1篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   15篇
  2006年   11篇
  2005年   6篇
  2004年   5篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1992年   4篇
  1990年   2篇
  1989年   3篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1973年   2篇
  1964年   3篇
  1963年   4篇
  1961年   2篇
  1960年   4篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1951年   1篇
  1950年   1篇
  1934年   1篇
  1933年   1篇
  1931年   2篇
  1927年   2篇
  1925年   1篇
  1924年   1篇
排序方式: 共有225条查询结果,搜索用时 281 毫秒
41.
42.
Bionanocomposites of poly(lactic acid) (PLA) and chemically modified, nanofibrillated cellulose (NFC) powders were prepared by extrusion, followed by injection molding. The chemically modified NFC powders were prepared by carboxymethylation and mechanical disintegration of refined, bleached beech pulp (c-NFC), and subsequent esterification with 1-hexanol (c-NFC-hex). A solvent mix was then prepared by precipitating a suspension of c-NFC-hex and acetone-dissolved PLA in ice-cold isopropanol (c-NFC-hexsm), extruded with PLA into pellets at different polymer/fiber ratios, and finally injection molded. Dynamic mechanical analysis and tensile tests were performed to study the reinforcing potential of dried and chemically modified NFC powders for PLA composite applications. The results showed a faint increase in modulus of elasticity of 10?% for composites with a loading of 7.5?% w/w of fibrils, irrespective of the type of chemically modified NFC powder. The increase in stiffness was accompanied by a slight decrease in tensile strength for all samples, as compared with neat PLA. The viscoelastic properties of the composites were essentially identical to neat PLA. The absence of a clear reinforcement of the polymer matrix was attributed to poor interactions with PLA and insufficient dispersion of the chemically modified NFC powders in the composite, as observed from scanning electron microscope images. Further explanation was found in the decrease of the thermal stability and crystallinity of the cellulose upon carboxymethylation.  相似文献   
43.
Caplat P  Nathan R  Buckley YM 《Ecology》2012,93(2):368-377
Little is known about the relative importance of mechanistic drivers of plant spread, particularly when long-distance dispersal (LDD) events occur. Most methods to date approach LDD phenomenologically, and all mechanistic models, with one exception, have been implemented through simulation. Furthermore, the few recent mechanistically derived spread models have examined the relative role of different dispersal parameters using simulations, and a formal analytical approach has not yet been implemented. Here we incorporate an analytical mechanistic wind dispersal model (WALD) into a demographic matrix model within an analytical integrodifference equation spread model. We carry out analytical perturbation analysis on the combined model to determine the relative effects of dispersal and demographic traits and wind statistics on the spread of an invasive tree. Models are parameterized using data collected in situ and tested using independent data on historical spread. Predicted spread rates and direction match well the two historical phases of observed spread. Seed terminal velocity has the greatest potential influence on spread rate, and three wind properties (turbulence coefficient, mean horizontal wind speed, and standard deviation of vertical wind speed) are also important. Fecundity has marginal importance for spread rate, but juvenile survival and establishment are consistently important. This coupled empirical/theoretical framework enables prediction of plant spread rate and direction using fundamental dispersal and demographic parameters and identifies the traits and environmental conditions that facilitate spread. The development of an analytical perturbation analysis for a mechanistic spread model will enable multispecies comparative studies to be easily implemented in the future.  相似文献   
44.
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.  相似文献   
45.
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.  相似文献   
46.
47.
48.
49.
50.
In order to remain stable, dispersed social groups have to solve two fundamental problems: the coordination of movement and cohesiveness within a group and the spacing between the groups. Here, we investigate mechanisms involved in intra-group coordination and inter-group spacing using the golden brown mouse lemur, Microcebus ravelobensis, as a model for a nocturnal, solitary foraging mammal with a dispersed social system. By means of radiotelemetry and bioacoustics we studied the olfactory and vocal behaviour during nocturnal dispersal and reunion of five sleeping groups.All groups used 3–17 sleeping sites exclusively, suggesting a sleeping site-related territoriality and competition for them. The occurrence of olfactory and vocal behaviour showed an asymmetrical temporal distribution. Whereas marking behaviour was observed exclusively during dispersal, a particular call type, the trill, was used by all groups during reunions. Interestingly, these trills carried group-specific signatures.Our findings provide the first empirical evidence for nocturnal primates in a natural environment that olfactory signals represent an important mechanism to regulate the distribution of different groups in space, whereas acoustic signals control intra-group cohesion and coordination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号