首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6971篇
  免费   433篇
  国内免费   2557篇
安全科学   580篇
废物处理   392篇
环保管理   556篇
综合类   4146篇
基础理论   1126篇
污染及防治   2215篇
评价与监测   318篇
社会与环境   300篇
灾害及防治   328篇
  2024年   17篇
  2023年   137篇
  2022年   382篇
  2021年   337篇
  2020年   270篇
  2019年   250篇
  2018年   257篇
  2017年   359篇
  2016年   347篇
  2015年   381篇
  2014年   526篇
  2013年   726篇
  2012年   569篇
  2011年   661篇
  2010年   462篇
  2009年   422篇
  2008年   509篇
  2007年   420篇
  2006年   412篇
  2005年   267篇
  2004年   210篇
  2003年   259篇
  2002年   269篇
  2001年   195篇
  2000年   219篇
  1999年   181篇
  1998年   153篇
  1997年   147篇
  1996年   120篇
  1995年   120篇
  1994年   78篇
  1993年   76篇
  1992年   78篇
  1991年   50篇
  1990年   34篇
  1989年   13篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1974年   1篇
  1973年   5篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有9961条查询结果,搜索用时 765 毫秒
991.
为明确兜兰属(Paphiopedilum)宽瓣亚属(Subgenus.Brachypetalum)植物各物种在我国的生存现状与濒危状况,在大量的野外调查和文献、标本数据收集的基础上,对其种群分布、数量、生境特征、市场贸易、受威胁因素、保护现状与保护成效进行统计分析,并依据《IUCN红色名录等级和标准(3.1版)》对该类群的濒危等级进行重新评估.结果表明,野外调查到硬叶兜兰(Paphiopedilum.micranthum)、麻栗坡兜兰(P.malipoense)、杏黄兜兰(P.armeniacum)、白花兜兰(P.emersonii)、巨瓣兜兰(P.bellatulum)、文山兜兰(P.wenshanense)、同色兜兰(P.concolor)7个目标物种,已知分布于我国50个县(市、区),共计194个自然分布点.宽瓣亚属植物在我国水平方向上主要分布于滇东南、黔西南、黔东北、滇西北、桂北与黔南交界处以及桂西北至桂西南等地区;垂直方向上集中分布于中高海拔段(780~1267m),平均海拔997m;在全国大尺度上,该亚属整体呈零散分布,区域小尺度上个体呈聚集生长;其小生境具有高海拔、透水、透气、喜阴、喜钙的特点.市场调查的贸易率为36.67%,贸易价格高低不等,具有较强的随机性;贸易来源主要为野外采挖,占贸易数量的88.32%,具有较强的地域性;贸易方式为现场和线上网络交易,具有较强的灵活性.该类群主要受到采挖和生境退化的威胁,分别占所有分布点的44.85%、29.83%.宽瓣亚属整体就地保率仅为34.53%,保护成效为一般保护;调查的29个保育地中,有20个保育地对该类群累计保育98次,除文山兜兰和绿叶兜兰外,其他7种迁地保护成效被评估为合适.巨瓣兜兰、文山兜兰由原来的濒危(EN)评估为极危(CR);麻栗坡兜兰、白花兜兰、杏黄兜兰评估等级未发生变化,仍为极危(CR);硬叶兜兰和同色兜兰由原来的易危(VU)评估为濒危(EN);德氏兜兰、绿叶兜兰被评为数据缺乏(DD).  相似文献   
992.
Naturally complete mixing promotes the spontaneous redistribution of dissolved oxygen(DO), representing an ideal state for maintaining good water quality, and conducive to the biomineralization of organic matter. Water lifting aerators(WLAs) can extend the periods of complete mixing and increase the initial mixing temperature. To evaluate the influence of artificial-induced continuously mixing on dissolved organic matter(DOM) removal performance, the variations of DOM concentrations, optical cha...  相似文献   
993.
Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.  相似文献   
994.
High efficient removal of antibiotics during nutriments recovery for biomass production poses a major technical challenge for photosynthetic microbial biofilm-based wastewater treatment since antibiotics are always co-exist with nutriments in wastewater and resist biodegradation due to their strong biotoxicity and recalcitrance. In this study, we make a first attempt to enhance metronidazole (MNZ) removal from wastewater using electrochemistry-activated binary-species photosynthetic biofilm of Rhodopseudomonas Palustris (R. Palustris) and Chlorella vulgaris (C. vulgaris) by cultivating them under different applied potentials. The results showed that application of external potentials of -0.3, 0 and 0.2 V led to 11, 33 and 26-fold acceleration in MNZ removal, respectively, as compared to that of potential free. The extent of enhancement in MNZ removal was positively correlated to the intensities of photosynthetic current produced under different externally applied potentials. The binary-species photoelectrogenic biofilm exhibited 18 and 6-fold higher MNZ removal rate than that of single-species of C. vulgaris and R. Palustris, respectively, due to the enhanced metabolic interaction between them. Application of an external potential of 0V significantly promoted the accumulation of tryptophan and tyrosine-like compounds as well as humic acid in extracellular polymeric substance, whose concentrations were 7.4, 7.1 and 2.0-fold higher than those produced at potential free, contributing to accelerated adsorption and reductive and photosensitive degradation of MNZ.  相似文献   
995.
Volatile organic compound (VOC) emission control and source apportionment in small-scale industrial areas have become key topics of air pollution control in China. This study proposed a novel characteristic factor and pattern recognition (CF-PR) model for VOC source apportionment based on the similarity of characteristic factors between sources and receptors. A simulation was carried out in a typical industrial area with the CF-PR model involving simulated receptor samples. Refined and accurate source profiles were constructed through in situ sampling and analysis, covering rubber, chemicals, coating, electronics, plastics, printing, incubation and medical treatment industries. Characteristic factors of n-undecane, styrene, o-xylene and propane were identified. The source apportionment simulation results indicated that the predicted contribution rate was basically consistent with the real contribution rate. Compared to traditional receptor models, this method achieves notable advantages in terms of refinement and timeliness at similar accuracy, which is more suitable for VOC source identification and apportionment in small-scale industrial areas.  相似文献   
996.
This work was to study composition characteristics and the subsequent effect on the lead (Pb) binding properties of dissolved organic matter (DOM) derived from seaweed-based (SWOF) and chicken manure organic fertilizers (CMOF) during a one-year field incubation experiment using the excitation-emission matrix-parallel factor (EEM-PARAFAC) and two-dimensional correlation spectroscopy (2DCOS) analysis. Results showed that high aromatic and hydrophobic fluorescent substances were enriched in CMOF-derived DOM and SWOF-derived DOM and enhanced over time. And phenolic groups in the fulvic-like substances for SWOF-derived DOM and carboxyl groups in the humic-like substances for CMOF-derived DOM had the fastest responses over time, respectively. Moreover, both non-fluorescent polysaccharides and fluorescent humic-like substances or fulvic-like substances with aromatic (C=C) groups first participated in the binding process of Pb to SWOF-derived DOM on day 0 and 180 during the lead binding process. In contrast, humic-like substances associated with aromatic (C=C) and phenolic groups gave a faster response to Pb binding on day 360. Regarding CMOF-derived DOM, the fulvic-like substances associated with aromatic (C=C) and carboxylic groups displayed a faster response to Pb ions on day 0. Nonetheless, polysaccharides and humic-like associated with phenolic groups had a faster response on days 180 and 360. It is noteworthy that the polysaccharides, which participated in Pb binding to CMOF-derived DOM, posed a higher risk of Pb in the environment after 360 days. Therefore, these findings gave new insights into the long-term applications of commercial organic fertilizers for the amendment of soil.  相似文献   
997.
Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important indicator of the degradation process for soil organic matter, remain less well understood. Using T-RFLP and sequencing methods, we investigated the effects of grazing on the temporal changes of cellulolytic fungal abundance and community structure in dry steppe soils during the growing months from May to September, on the Tibetan Plateau using T-RFLP and sequencing methods. The results demonstrated that the abundance of soil cellulolytic fungi under grazing treatment changed significantly from month to month, and was positively correlated with dissolved organic carbon (DOC) and soil temperature, but negatively correlated with soil pH. Contrastingly, cellulolytic fungal abundance did not change within the fencing treatment (ungrazed conditions). Cellulolytic fungal community structure changed significantly in the growing months in grazed soils, but did not change in fenced soils. Grazing played a key role in determining the community structure of soil cellulolytic fungi by explaining 8.1% of the variation, while pH and DOC explained 4.1% and 4.0%, respectively. Phylogenetically, the cellulolytic fungi were primarily affiliated with Ascomycota (69.65% in relative abundance) and Basidiomycota (30.35%). Therefore, grazing substantially reduced the stability of soil cellulolytic fungal abundance and community structure, as compared with the fencing treatment. Our finding provides a new insight into the responses of organic matter-decomposing microbes for grassland managements.  相似文献   
998.
Luoyang is a typical heavy industrial city in China, with a coal-dominated energy structure and serious air pollution. Following the implementation of the clean air actions, the physicochemical characteristics and sources of PM2.5 have changed. A comprehensive study of PM2.5 was conducted from October 16, 2019 to January 23, 2020 to evaluate the effectiveness of previous control measures and further to provide theory basis for more effective policies in the future. Results showed that the aerosol pollution in Luoyang in autumn and winter is still serious with the average concentration of 91.1 μg/m3, although a large reduction (46.9%) since 2014. With the contribution of nitrate increased from 12.5% to 25.1% and sulfate decreased from 16.7% to 11.2%, aerosol pollution has changed from sulfate-dominate to nitrate-dominate. High NO3/SO42− ratio and the increasing of NO3/SO42− ratio with the aggravation of pollution indicating vehicle exhaust playing an increasingly important role in PM2.5 pollution in Luoyang, especially in the haze processes. Secondary inorganic ions contributed significantly to the enhancement of PM2.5 during the pollution period. The high value of Cl/Na+ and EC concentration indicate coal combustion in Luoyang is still serious. The top three contributor sources were secondary inorganic aerosols (33.3%), coal combustion (13.6%), and industrial emissions (13.4%). Close-range transport from the western and northeastern directions were more important factors in air pollution in Luoyang during the sampling period. It is necessary to strengthen the control of coal combustion and reduce vehicle emissions in future policies.  相似文献   
999.
1000.
Recycling strongly acidic wastewater as diluted H2SO4 after contaminants contained being removed was previously proposed, however, Cl(-I), a kind of contaminant contained in strongly acidic wastewater, is difficult to remove, which severely degrades the quality of recycled H2SO4. In this study, the removal of Cl(-I) using PbO2 was investigated and the involved mechanisms were explored. The removal efficiency of Cl(-I) reached 93.38% at 50℃ when PbO2/Cl(-I) mole ratio reached 2:1. The identification of reaction products shows that Cl(-I) was oxidized to Cl2, and PbO2 was reduced to PbSO4. Cl2 was absorbed by NaOH to form NaClO, which was used for the regeneration of PbO2 from the generated PbSO4. Cl(-I) was removed through two pathways, i.e., surface oxidation and •OH radical oxidation. •OH generated by the reaction of PbO2 and OH plays an important role in Cl(-I) removal. The regenerated PbO2 had excellent performance to remove Cl(-I) after six-time regeneration. This study provided an in-depth understanding on the effective removal of Cl(-I) by the oxidation method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号