首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12325篇
  免费   114篇
  国内免费   1016篇
安全科学   217篇
废物处理   907篇
环保管理   1395篇
综合类   2617篇
基础理论   3504篇
污染及防治   2575篇
评价与监测   1119篇
社会与环境   1001篇
灾害及防治   120篇
  2024年   4篇
  2023年   44篇
  2022年   127篇
  2021年   111篇
  2020年   82篇
  2019年   86篇
  2018年   1552篇
  2017年   1491篇
  2016年   1287篇
  2015年   258篇
  2014年   229篇
  2013年   265篇
  2012年   670篇
  2011年   1554篇
  2010年   878篇
  2009年   769篇
  2008年   1060篇
  2007年   1404篇
  2006年   163篇
  2005年   144篇
  2004年   115篇
  2003年   178篇
  2002年   180篇
  2001年   83篇
  2000年   94篇
  1999年   81篇
  1998年   76篇
  1997年   74篇
  1996年   90篇
  1995年   70篇
  1994年   57篇
  1993年   50篇
  1992年   38篇
  1991年   15篇
  1990年   19篇
  1989年   11篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   14篇
  1983年   9篇
  1982年   3篇
  1981年   1篇
  1976年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Effective handling of municipal digested sludge requires that the product cake have low water content. To this end, we investigated the change in sludge dewaterability after the addition of fly ash to municipal digested sludge, dewatering of which is difficult because of its high organic content. The performance of the dewatering is compared with that of electroosmotic dewatering (EDW) and conventional mechanical dewatering (CMD). Fly ash classified by sieving to the size of 25–75 μm and >75 μm is added to the municipal digested sludge by 10, 20, and 50 wt% by wet base. When adding fly ash particles to municipal digested sludge, dewatering efficiency improved with smaller fly ash particle size and with increase in the amount. When sludge was dewatered using an electroosmotic dewatering method, the dewatering efficiency is improved about 40% by adding fly ash of 25–75 μm particle size with 20 wt% when compared with conventional mechanical dewatering method without adding the fly ash. It is concluded that fly ash particles rich in inorganic material are helpful in the dewatering process when added to municipal digested sludge and EDW is more effective than CDW.  相似文献   
992.
Different synthesis methods were applied to determine optimal conditions for polymerization of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (l-lactide), in order to obtain poly(l-lactide) (PLLA). Bulk polymerizations (in vacuum sealed vessel, high pressure reactor and in microwave field) were performed with tin(II) 2-ethylhexanoate as the initiator. Synthesis in the vacuum sealed vessel was carried out at the temperature of 150 °C. To reduce the reaction time second polymerization process was carried out in the high pressure reactor at 100 °C and at the pressure of 138 kPa. The third type of rapid synthesis was done in the microwave reactor at 100 °C, using frequency of 2.45 GHz and power of 150 W at the temperature of 100 °C. The temperature in this method was controlled via infrared system for in-bulk measuring. The solution polymerization (with trifluoromethanesulfonic acid as initiator) was possible even at the temperature of 40 °C, yielding PLLA with narrow molecular weight distribution in a very short period of time (less than 6 h). The obtained polymers had the number-average molecular weights ranging from 43,000 to 178,000 g mol−1 (polydispersity index ranging from 1 to 3) according to the gel permeation chromatography measurements. The polymer structure was characterized by Fourier transform infrared and NMR spectroscopy. Thermal properties of the obtained polymers were investigated using thermogravimetry and differential scanning calorimetry.  相似文献   
993.
Plasticized starch (PLS) is a renewable, degradable, and inexpensive polymer, but it suffers from poor mechanical properties. The mechanical properties can be improved by blending PLS with polyolefins, nonetheless, at high PLS content, the mechanical properties remain poor. Here we show that addition of clay can greatly improve the mechanical properties of PLS/polypropylene blends at high starch content. Unmodified and organically modified montmorillonite clays, MMT and Cloisite 30B respectively, were added to blends of glycerol-plasticized starch and polypropylene, compatibilized using maleated polypropylene. TEM indicates that MMT is well dispersed in the PLS phase of the blends, while Cloisite 30B is located both within the PLS phase as well as at the interface between PLS and PP. At high PLS content, the addition of clay increased the tensile strength and tensile modulus by an order of magnitude, while reducing the ultimate elongation only slightly. Such improvements are attributable to both the addition of clay as a reinforcing component, as well as to the change in the two phase morphology due to addition of clay.  相似文献   
994.
Poly-β-hydroxybuyrate (PHB) is a carbon—energy storage material which is accumulated as intracellular granule in variety of microorganism under nutrient starved conditions. Solid PHB is a biodegradable thermoplastic polymer and is utilizable in various ways similar to many conventional plastics. Ralstonia eutropha (Alcaligenes sp.), a gram negative bacteria accumulates PHB as insoluble granules inside the cells when nutrients other than carbon are limited. In this report effort has been made to analyze PHB granule synthesis inside Alcaligenes sp. NCIM 5085 by transmission electron microscopy and qualitative estimation of PHB was carried out by fourier transform infrared spectroscopy which provide better precision compared to other conventional techniques previously applied for PHB determination. Maximum PHB concentration of 2.20 ± 0.40 g/L and cell biomass of 3.42 ± 0.20 g/L was obtained after 48.0 h of fermentation. Leudking-Piret equation deduced mixed growth associated product formation which varies from earlier reports.  相似文献   
995.
Blends of water—soluble polymers based on Poly vinyl alcohol (PVA) and Polyethylene glycol (PEG) have been prepared by the solution casting technique. The effect of various doses of γ-radiation on the structural properties of PVA/PEG polymer blends with all its compositions has been investigated. From the visual observation of all the blend compositions, it was found that, the best compatibility of the blend is up to 40% PVA/60%PEG. The structure–Property behavior of all the prepared blends before and after γ-irradiation was investigated by IR Spectroscopy, thermogravimetric analysis (TGA), mechanical properties and Scanning electron microscope (SEM). The gel content and the swelling behavior of the PVA/PEG blends were investigated. It was found that the gel content increases with increasing irradiation dose and PVA concentration in the blend. Swelling percent increased as the composition of PEG increased in the blend. The results obtained by FTIR analysis and SEM confirm the existence of possible interaction between PVA and PEG homopolymers. TGA of PVA/PEG blend, before and after γ-irradiation, showed that the unirradiated and irradiated PVA/PEG blends are more stable against thermal decomposition than pure PVA. Improvement in tensile mechanical properties of PVA/PEG blends was occurred.  相似文献   
996.
In this study the possibility of poly (3-hydroxybutyrate) production from glycerol was investigated and optimized by Halorcula sp. IRU1, a novel archaea isolated from Urmia lake, Iran in batch experiments. Using Taguchi methodology, three important independent parameters (glycerol, yeast extract and KH2PO4) were evaluated for their individual and interactive effects on poly (3-hydroxybutyrate) production. It was shown that the glycerol concentration was the most significant factor affecting the yield of poly (3-hydroxybutyrate). The optimum factor levels were a glycerol concentration of 8% (v/v), yeast extract 0.8% (w/v) and KH2PO4 0.002% (w/v). The predicted value obtained for poly (3-hydroxybutyrate) production under these conditions was about 81.87%. We can conclude that Haloarcula sp. IRU1 has a high potential for synthesis of poly (3-hydroxybutyrate) from glycerol.  相似文献   
997.
Investigations have continued for production high performance agro-based composites using environmentally acceptable approaches. This study examines the role of adding amide-containing biopolymers during synthesis of urea–formaldehyde (UF) on properties of adhesive produced, especially its adhesion potential. The environmental performance of UF-resin synthesized in the presence of modified amide-containing biopolymer was evaluated by evaluating the free-HCHO of both adhesive (during processing) and of the eventual engineered composite product. Also, the benefits of this synthesis-modified adhesive in enhancing the bondability of sugar-cane fibers used in engineered composite panels was evaluated and compared to using UF-resin. The results obtained show that, static bending of the produced composites varied from 27.7 to 33.13 N/mm2 of modulus of rupture (MOR) and from 2860 to 3374 N/mm2 of Modulus of Elasticity (MOE); while for internal bond (IB) it’s varied from 0.64 to 0.866 N/mm2. Based on the ANSI and EN Standards modified UF-based agro composites produced meet the performance requirements for high grade particleboards with respect to static bending strength. These agro-based composite also tested out as having free-HCHO values of ~13 mg/100 g board.  相似文献   
998.
The study was carried out to investigate the effects of filler content and two different compatibilizing agents (Eastman G-3003 and G-3216) on the mechanical properties of polypropylene reinforced with corn stalk and wood flour. In the sample preparation, three levels of filler loading (30, 40 and 50 wt%) and one level of compatibilizing agent content (2.5 wt%) were used. For overall trend, with addition of both grades of the compatibilizing agents, tensile and flexural properties of the composites significantly improved, as compared with the pure PP. Tensile and flexural properties reach a maximum at 40 wt% filler content and gradually decrease with a further increase in wood particle content. The composites treated with G-3003 gave better results in comparison with G-3216. This could be caused by the high melt viscosity of G-3003. In general, corn stalk flour filled composites showed superior mechanical properties.  相似文献   
999.
The effects of manufacturing parameters on mechanical properties of medium density fibreboard (MDF) bonded with modified soy protein-based glue were studied to find an appropriate manufacture technology. Physical properties of MDF made with different amount of wax emulsion were measured. Results indicated that water repellent had no obvious influence on physical properties of soy protein-based MDF boards. The fiberboards bonded with soy protein-based glue showed stronger water resistance properties than those bonded with urea–formaldehyde (UF) resins. Furthermore, the soy protein-based MDF boards had good quality [25.2% 24 h soak thickness swell (TS), 29.9 MPa modulus of rupture (MOR), 3130 MPa modulus of elasticity (MOE)], which met requirements of Chinese national standard. Practical processing parameters were obtained by orthogonal experiment, i.e., glue content 8.0%, hot-press temperature 200 °C, and hot-press time 150 s.  相似文献   
1000.
Starch nanocomposites have been prepared using mineral clay. Montmorillonite, kaolin and a surface-modified montmorillonite by dimethyl (hydrogenated tallow alkyl) ammonium cation were used. Starch-g-PCL nanocomposites have been prepared with graft polymerization through in situ ring-opening polymerization of ε-caprolactone in the presence of starch, Sn(Oct)2 (Tin(II) 2-ethyl hexanoate) as an initiator/catalyst and silicate layers. In fact, the related composites were prepared in solution method, bulk polymerization and in situ polymerization methods with introducing the mineral clay. The effect of kind of clay on d-spacing of silicate layers was investigated and the obtained nanocomposites were analyzed using X-ray diffraction. The obtained compounds were characterized by Fourier transform infrared (FT-IR). Morphology of the prepared nanocomposites was investigated using scanning electron microscopy and DSC enhanced the study of thermal behaviour of the prepared composite compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号