首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8716篇
  免费   620篇
  国内免费   3098篇
安全科学   820篇
废物处理   476篇
环保管理   666篇
综合类   5165篇
基础理论   1436篇
环境理论   2篇
污染及防治   2595篇
评价与监测   460篇
社会与环境   411篇
灾害及防治   403篇
  2024年   31篇
  2023年   176篇
  2022年   492篇
  2021年   481篇
  2020年   434篇
  2019年   357篇
  2018年   390篇
  2017年   477篇
  2016年   441篇
  2015年   495篇
  2014年   695篇
  2013年   893篇
  2012年   784篇
  2011年   770篇
  2010年   592篇
  2009年   553篇
  2008年   577篇
  2007年   554篇
  2006年   454篇
  2005年   308篇
  2004年   254篇
  2003年   287篇
  2002年   286篇
  2001年   223篇
  2000年   224篇
  1999年   221篇
  1998年   187篇
  1997年   170篇
  1996年   151篇
  1995年   102篇
  1994年   105篇
  1993年   76篇
  1992年   54篇
  1991年   39篇
  1990年   22篇
  1989年   17篇
  1988年   12篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
301.
李玫  余柄志  衡芮  周洋 《环境工程》2017,35(5):154-157
以郫县安德镇川菜产业园为研究对象,采用等标污染负荷法对污染影响进行了标准化评价。结果发现:川菜产业园主要的工业污染行业为豆制品加工行业,排污量为2 919.94 t/a,占总排污量的96.46%,等标污染负荷为9.83,占总污染负荷的92.83%,其中有6家企业为主要控制对象。对比分析发现,环境污染受企业规模、末端处理方式、废水排放量等多方面因素共同影响。所有污染因子中,BOD对环境的实质污染影响较大。该研究成果将为优化小城镇产业集群的规划、管理和污染物总量控制提供有价值的参考。  相似文献   
302.
The impact of Fe concentrations on the growth of Microcystisaeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density, total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M. aeruginosa to different concentration gradients of Fe(III) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were: (1) decelerated when the Fe(III) concentration was lower than 50 μg/L in the solutions, (2) promoted and positively related to the increase of Fe(III) concentration from 100 to 500 μg/L in the solutions over the experimental period, and (3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(III) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(III)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(III) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5 according to the functions for different Fe(III) concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(III) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.  相似文献   
303.
Ambient volatile organic compounds pollution in China   总被引:1,自引:0,他引:1  
Owing to rapid economic and industrial development, China has been suffering from degraded air quality and visibility. Volatile organic compounds (VOCs) are important precursors to the formation of ground-level ozone and hence photochemical smog. Some VOCs adversely affect human health. Therefore, VOCs have recently elicited public concern and given new impetus to scientific interest. China is now implementing a series of polices to control VOCs pollution. The key to formulating policy is understanding the ambient VOCs pollution status. This paper mainly analyzes the species, levels, sources, and spatial distributions of VOCs in ambient air. The results show that the concentrations of ambient VOCs in China are much higher than those of developed countries such as the United States and Japan, especial benzene, which exceeds available standards. At the same time, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of various VOCs are calculated. Aromatics and alkenes have much higher OFPs, while aromatics have higher SOAFP. The OFPs of ambient VOCs in the cities of Beijing, Guangzhou and Changchun are very high, and the SOAFP of ambient VOCs in the cities of Hangzhou, Guangzhou and Changchun are higher.  相似文献   
304.
The selective catalytic reduction(SCR) activities of the MoO_3 doped V/WTi catalysts prepared by the incipient wetness impregnation method at low temperature were investigated.The results showed that the addition of MoO_3 could enhance the NO_ xconversion at low temperature and the best SCR activity was obtained when the dosage of MoO_3 reached5 wt.%. The NH3-TPD and DRIFTS experiments indicated that the addition of MoO_3 changed the type and number of acid sites on the surface of catalysts and reaction activities of acid sites were altered at the same time. The redox capacity and amount of active oxygen species got improved for V3Mo5/WTi catalyst, which could be confirmed by the H_2-TPR and transient response experiments. Water vapor inhibited the NO_xconversion at low temperature. Deposition of ammonium sulfate or bisulfate might be main reason for the loss of catalytic activity in the presence of SO_2 at low temperature. Choosing the suitable NH_3/NO ratio and elevation of reaction temperature both could weaken the influence of SO_2 on the SCR activity of the V3Mo5/WTi catalyst. Thermal treatment of the deactivated catalyst at350°C could get the low temperature activity recovered. The decrease of GHSV improved the de NO_x efficiency at low temperature and we speculated that the rational technological process and operation parameters could contribute to the application of this kind of catalysts in real industrial environment.  相似文献   
305.
Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO_2~-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability.  相似文献   
306.
The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers'' information and vehicles'' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model.  相似文献   
307.
Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials(MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics,energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10 μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774 A.1 macrophages and lung epithelial A549 cells.Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs.Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis.Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial.  相似文献   
308.
为提高剩余污泥的破解效果并降低能耗,采用FS(fluid shear,流体剪切)、UC(ultrasonic cavitation,超声空化)、FS和UC联合工艺(FS-UC,UC-FS)破解剩余污泥,并应用单因素试验结合响应面法对联合工艺进行优化.结果表明:FS对剩余污泥破解效果一般,只在开始阶段具有较好效果,随作用时间延长,破解效果未有显著提高甚至下降.UC对剩余污泥破解效果明显,随作用时间延长,破解效果显著提升,但能耗也随之增大,EDR(energy disintegration ratio,效能比)明显下降.相同作用时间下,UC破解效果优于FS破解效果,UC破解剩余污泥的DDCOD(degree of disintegration,破解率)与EDR均明显高于FS方法.单因素试验得出的较优FS作用时间范围为2~8 min,较优UC作用时间范围为5~15 min.响应面法试验结果显示,联合工艺的剩余污泥破解效果和能量利用率均优于单一方法,联合工艺中FS-UC工艺的破解效果优于UC-FS工艺.FS-UC工艺的最佳参数:FS处理5.6 min再UC处理15.0 min,该条件下剩余污泥实际DDCOD为50.8%,EDR为26.8%.UC-FS工艺的最佳参数:先UC作用15.0 min再FS作用7.8 min,该条件下剩余污泥实际DDCOD为36.5%,EDR为17.1%.研究显示,以DDCOD和EDR为指标,4种工艺的高效性顺序为FS-UC > UC-FS > UC > FS,其中FS-UC工艺具有能耗低、破解效率高的特点,是4种工艺中剩余污泥破解效果最好的一种工艺.   相似文献   
309.
针对小城市污水排放量历史数据较少,城市发展变化较大的特点,以楚雄市为例,提出了基于污水排放来源以及生成机理的预测方法。根据历史人口增长趋势以及城镇化率进行城区人口综合预测,运用定额法根据不同行业用水特点预测城市用水量,结合城市污水排放特点对楚雄市近期以及远期城市污水排放量进行科学合理的预测,并对预测结果进行了分析,可为城市发展规划提供决策参考。  相似文献   
310.
Global marine capture fisheries are undergoing serious stress, with overfishing as one of the major problems. In order to mitigate the overexploitation of capture fisheries, government regulation or fisheries management is necessary. Among various management approaches, vessel quantity control is being widely employed. To achieve effective governance of fisheries, the technical efficiency (TE) issue needs to be considered in the implementation of vessel quantity control. Using the Pacific saury (Cololabis saira) stick-held dip net fishery in Japan as a case study, this paper estimated the TE of sampled fishing vessels and explored the possible factors affecting the gap in efficiency. This paper aims to provide suggestions for a better implementation of vessel quantity control in global Pacific saury fishery, and also to serve as an empirical example of integrating TE analysis into management of overexploited fisheries for achieving satisfactory effects. Results show the TE score of the sampled fishery averaged around 0.7 from 2009 to 2014, and factors concerning owners/skippers’ motivation such as vessel ownership and specialization, vessel tonnage as well as skippers’ age show positive effects on the TE. Our findings in the present work provide important strategies for mitigating overexploitation in fisheries. Conducting technical efficiency analysis of targeted fisheries is a vital issue to be considered for designing and realizing an effective implementation of fisheries management approaches. The large vessels and the enthusiasm of vessel owners/skippers need to be particularly addressed when vessel quantity limit is considered to mitigate the problem of overfishing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号