首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7865篇
  免费   1381篇
  国内免费   2857篇
安全科学   1465篇
废物处理   112篇
环保管理   641篇
综合类   6499篇
基础理论   1140篇
污染及防治   613篇
评价与监测   568篇
社会与环境   681篇
灾害及防治   384篇
  2024年   115篇
  2023年   298篇
  2022年   637篇
  2021年   616篇
  2020年   745篇
  2019年   474篇
  2018年   485篇
  2017年   562篇
  2016年   472篇
  2015年   524篇
  2014年   466篇
  2013年   594篇
  2012年   749篇
  2011年   748篇
  2010年   682篇
  2009年   622篇
  2008年   612篇
  2007年   571篇
  2006年   548篇
  2005年   457篇
  2004年   314篇
  2003年   180篇
  2002年   189篇
  2001年   193篇
  2000年   133篇
  1999年   65篇
  1998年   17篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   6篇
  1992年   8篇
  1989年   1篇
  1982年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
天津市PM2.5中水溶性无机离子污染特征及来源分析   总被引:7,自引:2,他引:5  
2008年1、4、7月和10月在天津大气层边界站,利用中流量采样器对大气中的细粒子进行了滤膜样品采集,应用离子色谱检测技术分析了8种水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、SO42-、NO3-和Cl-)的含量。结果表明,天津市大气PM2.5中总水溶性无机离子平均浓度为47.3 μg/m3,其中,SO42-、NO3-、NH4+和Cl-是最主要的水溶性无机离子,占总离子质量分数共计87.3%,表明了天津市细粒子中的主要水溶性无机离子的特征。/2 平均比值接近1.0,显示硫酸氨是细粒子中硫酸盐的主要存在形式。NO3-/SO42-浓度比的平均值为0.65,反映了燃煤污染与机动车尾气污染并存的复合型大气污染特征。并通过对PM2.5中8个水溶性离子成分的主成分分析进一步揭示了其来源。  相似文献   
292.
以"十一五"期间较为常见的火电厂石灰石-石膏脱硫设施竣工环保验收监测为例,着重就验收过程监测布点、设施处理效率计算、污染物总量核算、减排项目标准执行以及环境管理检查中存在的问题进行探讨,提出解决问题的方法与思路,为今后火电厂竣工环保验收监测工作提供借鉴。  相似文献   
293.
对2005年北京大气中异戊二烯进行了一年的观测分析。结果表明,异戊二烯体积分数年平均值为0.58×10-9,月平均值为0.1×10-9~1.8×10-9,7月最高,1月最低。春、秋、冬三季,异戊二烯日变化形式呈三峰形,分别在14:00、18:00、02:00;18:00、02:00、08:00;02:00、10:00、16:00出现峰值;夏季异戊二烯体积分数日变化呈现白天高夜晚低且在14:00出现峰值。夏季异戊二烯源排放主要由生物排放控制,其日变化形式受温度、辐射影响大;春季和秋季异戊二烯源排放受汽车尾气和生物排放共同控制,其日变化形式受汽车尾气影响大,温度、辐射也有一定影响;冬季异戊二烯源排放主要由汽车尾气控制,其日变化形式主要受汽车尾气影响。不同季节北京大气中的异戊二烯体积分数日变化形式与PM2.5浓度日变化形式大致相同。  相似文献   
294.
脱硫废水水质复杂、含有重金属,处理难度很大,为此开发了一种新型的脱硫废水处理技术——蒸发塔技术,可以实现脱硫废水的零排放。在实验室搭建了小型蒸发塔实验台,对脱硫废水的蒸发特性、热量衡算进行了研究。研究表明:导流板角度一定的情况下,脱硫废水主蒸发区在塔体中心位置,随着脱硫废水处理量的增加,主蒸发区域向塔壁和塔体下部偏移;导流板角度减小,高温区下移;雾矩受给液量和雾化器转速的双重影响,给液量越大,雾矩越大,转速越大,雾矩越小;塔径一定的条件下,适当调节进风量和导流板角度可增加脱硫废水的处理量;模拟计算表明,蒸发系统抽取热烟气量较少,不会对电厂热系统产生明显影响。  相似文献   
295.
电路板插槽元器件、通孔元器件、大元器件和小元器件的拆卸是废旧电路板资源化的第一步。前三者的拆卸率对后续的电路板粉碎有较大影响,是决定拆卸效果的重要参数。为探究工业余热拆卸废旧电路板方法中通气温度、加热时间和喷吹次数对元器件拆卸率的影响,找出最优的拆卸参数组合,进行了废旧电路板拆卸的正交实验。对元器件拆卸率、关键元器件总拆卸率的极差分析和方差分析表明,通气温度和加热时间的增大有利于元器件拆卸率增大;增加喷吹次数,有利于大元器件和小元器件的拆卸,但过多次数喷吹将造成插槽、通孔元器件引脚弯曲,拆卸率减小;通气温度、加热时间对元器件拆卸的影响不具显著性,喷吹次数仅对大元器件拆卸有显著性影响。综合分析关键元器件的拆卸率:通气温度350℃、加热时间5 min和喷吹6次是最优的拆卸参数组合,关键元器件总拆卸率达到98.6%。  相似文献   
296.
为了解煤胶体对汞的吸附动力学特性,采用沉降法和离心法提取由霍林河采集煤样中的煤胶体(0~2、2~5、5~10 μm),采用批量实验对不同粒径和不同温度下,煤胶体对汞的吸附动力学特性进行了研究。结果表明:煤胶体对汞的吸附反应为吸热反应,以化学吸附为主,其吸附动力学过程可用准二级动力学方程和双室模型很好的描述。煤胶体对汞的平衡吸附量随粒径的减小和温度的升高而逐渐增大,不同粒径煤胶体受温度影响的大小关系为(5~10)μm > (2~5)μm > (0~2)μm。煤胶体对汞的吸附从初始阶段到达到表观平衡,快速吸附均占据优势。在表观平衡时,粒径越大,快速吸附的贡献率越小。煤胶体对汞的吸附反应速率随温度升高和粒径减小而增大。温度越高、粒径越小,快速吸附速率越大;而慢速吸附速率则随温度升高和粒径增大而增大。汞在0~2 μm和2~5 μm煤胶体上的吸附过程,粒内扩散是其主要控速步骤;而对于5~10 μm的煤胶体,膜扩散是主要控速步骤。  相似文献   
297.
采用臭氧-BAF组合工艺处理西北地区微污染窖水,使用比紫外吸收值(SUVA)、有机物分子量分布和三维荧光光谱等指标分析了臭氧预氧化对微污染窖水有机物特性的影响,研究了组合工艺对不同污染物的去除效果。结果表明:原水经臭氧预氧化后类腐殖质、类色氨酸物质含量分别下降65%、18%;水中小分子有机物含量增加,进水可生化性提高;经臭氧预氧化后BAF反应器出水类色氨酸物质含量低于未经臭氧预氧化的BAF反应器出水,臭氧预氧化起到了强化后续生物处理的作用。反应器出水CODMn、NH3-N浓度分别为2.97 mg·L-1、0.12 mg·L-1,满足生活饮用水卫生标准的要求;TOC、UV254和TN去除率分别为55%、53%和45%,水中污染物质得到有效去除。  相似文献   
298.
近年来,反复强调治理黑臭河涌的必要性,为了修复广东南海某黑臭河涌,采用优势菌接种和多级好氧-富氧生物处理原位修复集成工艺系统修复黑臭水体。实验结果表明,通过向底泥和上覆水体里投加培养、驯化的优势菌种,辅以光合细菌、硝化细菌,上覆水体的水质显著好转,水体透明度由初始的5 cm 左右,上升至35 cm 左右,水体黑臭完全消除。在土著微生物的作用下,水体中的有机物得到很好的去除,上覆水体的COD、氨氮、BOD5和总磷的浓度显著下降,其去除率分别达到68.1%~78.7%、79.8%~80.1%、84.8%~85.2%和76.4%~83.6%,河涌的自净能力得到大大提高。  相似文献   
299.
应用Materials Studio软件,采用巨正则系综蒙特卡洛方法,依据电厂烟气注入采空区防火与封存实际,对煤吸附CO2、O2和N2的能力与竞争性差异进行分析。由计算结果可知,相比于吸附O2、N2,煤吸附单组分CO2除了范德华能起主要作用,还有很强的静电作用能。由相互作用能和等量吸附热计算结果可知,煤容易吸附CO2,而不容易吸附O2和N2。298.15 K时,CO2对N2和O2吸附选择性及O2对N2的吸附选择性分别为42.396、32.357和1.310,揭示了竞争能力大小为CO2 > O2 > N2。分压分别为CO2 16.5 kPa+N2 79 kPa+O2 4.5 kPa内系统竞争吸附时,受吸附能力、竞争性和分压影响,CO2被大量吸附,而O2吸附抑制。  相似文献   
300.
细颗粒物(PM2.5)随空调新风进入室内,和室内产生的PM2.5粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM2.5浓度与CO2体积分数双组分模型,提出了适用于某会议室不同室内外PM2.5源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM2.5散发源、温和天气室内有无PM2.5散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM2.5浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号