首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   10篇
  国内免费   8篇
安全科学   16篇
废物处理   10篇
环保管理   92篇
综合类   67篇
基础理论   132篇
环境理论   12篇
污染及防治   142篇
评价与监测   39篇
社会与环境   39篇
  2023年   4篇
  2022年   10篇
  2021年   7篇
  2020年   8篇
  2019年   10篇
  2018年   24篇
  2017年   22篇
  2016年   22篇
  2015年   16篇
  2014年   21篇
  2013年   44篇
  2012年   29篇
  2011年   45篇
  2010年   24篇
  2009年   24篇
  2008年   34篇
  2007年   27篇
  2006年   35篇
  2005年   16篇
  2004年   12篇
  2003年   29篇
  2002年   18篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有549条查询结果,搜索用时 31 毫秒
521.
There are relatively few Federal environmental regulations that influence agricultural production in the US. However, many local and state environmental rules may influence the management practices on US farms as might interactions between urban population centers and agricultural producers. Detailed analysis of corn farms gives insight into these relationships and suggests that stringent environmental regulations could increase the likelihood of adoption of certain conservation practices, all else being constant, but that the interaction between urban populations has less of an effect on the adoption decisions.  相似文献   
522.
An interactive spreadsheet model has been created for quantitative predictions of propanil sorption and reaction in a slurried Manitoba clay soil. Based on experimental values for the numbers of empty and filled sorption sites as reactants and products, the reaction mechanism has been described with conventional chemical kinetics. The on line HPLC μ extraction method revealed labile sorption, intraparticle diffusion, and a chemical reaction. Laidler's integral rate law for second order kinetics describes the labile sorption. Desorption, intraparticle diffusion, and the chemical reaction are all described by first order kinetics. The time dependent effects of initial concentration and amount of slurried soil can be predicted for sorption, intraparticle diffusion, and the amount of reaction product. Suggested applications include storm runoff and inputs for fate and transport hydrology models.  相似文献   
523.
The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.  相似文献   
524.
Different collector types, sample workup procedures and analysis methods to measure the deposition of polycyclic aromatic hydrocarbons (PAH) were tested and compared. Whilst sample workup and analysis methods did not influence the results of PAH deposition measurements, using different collector types changed the measured deposition rates of PAH significantly. The results obtained with a funnel-bottle collector showed the highest deposition rates and a low measurement uncertainty. The deposition rates obtained with the wet-only collectors were the lowest at industrial sites and under dry weather conditions. For the open-jar collectors the measurement uncertainty was high. Only at an industrial site with extremely high PAH deposition rates the results of open-jar collectors were comparable to those obtained with funnel-bottle collectors. Thus, if bulk deposition of PAH has to be measured, funnel-bottle combinations are proved to be the collectors of choice. These collectors were the only ones always fulfilling the requirements of European legislation.  相似文献   
525.
Establishing baseline hydrologic characteristics for lakes in the United States (U.S.) is critical to evaluate changes to lake hydrology. We used the U.S. Environmental Protection Agency National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water‐level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope‐derived parameters: evaporation‐to‐inflow (E:I) and water residence time. We present (1) national and regional distributions of the study variables for both natural and man‐made lakes and (2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; whereas in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope‐derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow‐through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was less than one year and was longer in natural vs. man‐made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.  相似文献   
526.
In order to understand the bioaccumulation of 241Am and 134Cs in scallops living in sediments, the uptake and depuration kinetics of these two elements were investigated in the king scallop Pecten maximus exposed via seawater, food, or sediment under laboratory conditions. Generally, 241Am accumulation was higher and its retention was stronger than 134Cs. This was especially obvious when considering whole animals exposed through seawater with whole-body concentration factors (CF7d) of 62 vs. 1, absorption efficiencies (A0l) of 78 vs. 45 for seawater and biological half-lives (Tb½l) of 892 d vs. 22 d for 241Am and 134Cs, respectively. In contrast, following a single feeding with radiolabelled phytoplankton, the assimilation efficiency (AE) and Tb½l of 134Cs were higher than those of 241Am (AE: 28% vs. 20%; Tb½l: 14 d vs. 9 d). Among scallop tissues, the shells always contained the higher proportion of the total body burden of 241Am whatever the exposure pathway. In contrast, the whole soft parts presented the major fraction of whole-body burden of 134Cs, which was generally associated with muscular tissues. Our results showed that the two radionuclides have contrasting behaviors in scallops, in relation to their physico-chemical properties.  相似文献   
527.

Background, aim, and scope

Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city’s air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 µg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution.

Materials and methods

The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized additive models, focusing on day-to-day variations of ambient air pollutants levels. Two indicators were estimated: (a) appropriateness, the ratio between mean levels of the pollutant for control days versus the other days, and (b) effectiveness, the ratio between mean levels of the pollutant for post-control days versus the other days. Ratios in regression analyses were adjusted for trend, seasonality, temperature, humidity and atmospheric pressure, calendar day, and special events as well as the other pollutants.

Results

A total of 702 control days were made on the factories’ industrial production during the 10-year period. Fifteen reductions and five shutdown control days took place at factory A for ambient air SO2. At factory B, more controls were carried out for the SO2 pollutant in the years 1992–1993 and 1997. At factory C, the control days for SO2 decreased from 59 reductions and 14 shutdowns to a minimum from 1995 onwards, whereas the controls on TSP were more frequent, reaching a maximum of 99 reductions and 47 shutdowns in the last year. SO2 ambient air mean levels ranged from 456 to 699 µg/m3 among factories on reduction control days and between 624 and 1,010 µg/m3 on shutdown days. The TSP ambient air mean levels were 428 and 506 µg/m3 on reduction and shutdown days, respectively. For all types of control days and factories, a mean ratio of 104% (95% confidence interval [CI] 88 to 121) in SO2 levels was obtained and a mean ratio of 67% (95% CI 59 to 75) in TSP levels. Post-control days at all factories showed a mean ratio of ?16% (95% CI ?7 to ?24) in SO2 levels and a mean ratio of ?13% (95% CI ?7 to ?19) in TSP levels.

Discussion

Interventions on industrial production based on the urban SO2 and TSP ambient air levels were justified by the high concentrations detected. The best assessment of the interventions’ effectiveness would have been to utilize the ambient air pollutant concentration readings from the entire time of the production shutdowns or reductions; however, the daily hourly maximum turned out to be a useful indicator because of meteorological factors influencing the diurnal concentration profile. A substantial number of interventions were carried out from 1 to 3 am, when vehicular traffic was minimum. On the other hand, atmospheric stability undergoes diurnal cycling in the autumn–winter period due to thermal inversion, which reaches maximum levels around daybreak. Therefore, this increases the ambient air levels and justified the interventions carried out at daybreak in spite of the traffic influence.

Conclusions

All the interventions for SO2 and TSP were carried out when the measured ambient air levels of pollutants were exceeded, which shows the appropriateness of the intervention program. This excess was greater when intervening on SO2 than on the TSP levels. For both ambient air levels of SO2 and TSP, significant drops in air pollution were achieved from all three factories following activity reductions. The production shutdown controls were very effective, because they returned excess levels, higher than in the reduction controls, to everyday mean values.

Recommendations and perspectives

The Cartagena City observational system of intermittent control has proven to effectively reduce industrial emissions’ impact on ambient air quality. This experienced model approach could serve well in highly polluted industrial settings. From a public health perspective, studies are needed to assess that the industrial interventions to control air pollution were related to healthier human populations. Legislation was needed to allow the public administration to take direct actions upon the polluting industries.  相似文献   
528.
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.  相似文献   
529.
The U.S. Environmental Protection Agency (EPA) and the federal land management community (National Park Service, United States Fish and Wildlife Service, United States Forest Service, and Bureau of Land Management) operate extensive particle speciation monitoring networks that are similar in design but are operated for different objectives. Compliance (mass only) monitoring is also carried out using federal reference method (FRM) criteria at approximately 1000 sites. The Chemical Speciation Network (CSN) consists of approximately 50 long-term-trend sites, with about another 250 sites that have been or are currently operated by state and local agencies. The sites are located in urban or suburban settings. The Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network consists of about 181 sites, approximately 170 of which are in nonurban areas. Each monitoring approach has its own inherent monitoring limitations and biases. Determination of gravimetric mass has both negative and positive artifacts. Ammonium nitrate and other semivolatiles are lost during sampling, whereas, on the other hand, measured mass includes particle-bound water. Furthermore, some species may react with atmospheric gases, further increasing the positive mass artifact. Estimating aerosol species concentrations requires assumptions concerning the chemical form of various molecular compounds, such as nitrates and sulfates, and organic material and soil composition. Comparing data collected in the various monitoring networks allows for assessing uncertainties and biases associated with both negative and positive artifacts of gravimetric mass determinations, assumptions of chemical composition, and biases between different sampler technologies. All these biases are shown to have systematic seasonal characteristics. Unaccounted-for particle-bound water tends to be higher in the summer, as does nitrate volatilization. The ratio of particle organic mass divided by organic carbon mass (Roc) is higher during summer and lower during the winter seasons in both CSN and IMPROVE networks, and Roc is lower in urban than non-urban environments.  相似文献   
530.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号