首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   43篇
  国内免费   22篇
安全科学   44篇
废物处理   37篇
环保管理   185篇
综合类   90篇
基础理论   244篇
环境理论   8篇
污染及防治   153篇
评价与监测   55篇
社会与环境   32篇
灾害及防治   9篇
  2023年   9篇
  2022年   16篇
  2021年   16篇
  2020年   16篇
  2019年   24篇
  2018年   43篇
  2017年   41篇
  2016年   50篇
  2015年   35篇
  2014年   35篇
  2013年   60篇
  2012年   39篇
  2011年   78篇
  2010年   46篇
  2009年   41篇
  2008年   47篇
  2007年   46篇
  2006年   48篇
  2005年   18篇
  2004年   25篇
  2003年   19篇
  2002年   15篇
  2001年   15篇
  2000年   7篇
  1999年   8篇
  1998年   6篇
  1997年   12篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   5篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有857条查询结果,搜索用时 281 毫秒
851.
Indigenous trees play key roles in West African landscapes, such as the néré tree (Parkia biglobosa (Jacq.) R.Br. ex G.Don). We applied social–ecological network analysis to understand the social–ecological interactions around néré. We documented the benefits néré provides and the multiple social interactions it creates amongst a large range of actors. The flows of rights over the trees and benefits from them formed two hierarchical networks, or cascades, with different actors at the top. The two forms of power revealed by the two cascades of rights and benefits suggest possible powers and counter-powers across gender, ethnicity, and age. We documented how the tree catalyses social interactions across diverse groups to sustain vital social connections, and co-constitute places, culture, and relationships. We argue that a paradigm shift is urgently needed to leverage the remarkable untapped potential of indigenous trees and Cultural Keystone Species in current global restoration and climate change agendas.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-022-01733-z.  相似文献   
852.
Environmental and Ecological Statistics - Monitoring waterbird populations in Australia is challenging for reasons of counting logistics, and because population aggregation and dispersion can shift...  相似文献   
853.
Biodiversity loss is driven by human behavior, but there is uncertainty about the effectiveness of behavior-change programs in delivering benefits to biodiversity. To demonstrate their value, the biodiversity benefits and cost-effectiveness of behavior changes that directly or indirectly affect biodiversity need to be quantified. We adapted a structured decision-making prioritization tool to determine the potential biodiversity benefits of behavior changes. As a case study, we examined two hypothetical behavior-change programs––wildlife gardening and cat containment––by asking experts to consider the behaviors associated with these programs that directly and indirectly affect biodiversity. We assessed benefits to southern brown bandicoot (Isoodon obesulus) and superb fairy-wren (Malurus cyaneus) by eliciting from experts estimates of the probability of each species persisting in the landscape given a range of behavior-change scenarios in which uptake of the behaviors varied. We then compared these estimates to a business-as-usual scenario to determine the relative biodiversity benefit and cost-effectiveness of each scenario. Experts projected that the behavior-change programs would benefit biodiversity and that benefits would rise with increasing uptake of the target behaviors. Biodiversity benefits were also predicted to accrue through indirect behaviors, although experts disagreed about the magnitude of additional benefit provided. Scenarios that combined the two behavior-change programs were estimated to provide the greatest benefits to species and be most cost-effective. Our method could be used in other contexts and potentially at different scales and advances the use of prioritization tools to guide conservation behavior-change programs.  相似文献   
854.
Many taxonomic groups successfully exploit groundwater environments and have adapted to a subterranean (stygobiotic) existence. Among these groups are freshwater gastropods (stygosnails), which represent a widespread and taxonomically diverse component of groundwater ecosystems in North America. However, owing to sampling difficulty and lack of targeted study, stygosnails remain among the most understudied of all subterranean groups. We conducted a literature review to assess the biodiversity and geographic associations of stygosnails, along with the threats, management activities, and policy considerations related to the groundwater systems they inhabit. We identified 39 stygosnail species known to occur in a range of groundwater habitats from karst regions in the United States and Mexico. Most stygosnails exhibit extreme narrow-range endemism, resulting in a high risk of extinction from a single catastrophic event. We found that anthropogenically driven changes to surface environments have led to changes in local hydrology and degradation of groundwater systems inhabited by stygosnails such as increased sedimentation, introduction of invasive species, groundwater extraction, or physical collapse of water-bearing passages. Consequently, 32 of the 39 described stygosnail species in the United States and Mexico have been assessed as imperiled under NatureServe criteria, and 10 species have been assessed as threatened under International Union for Conservation of Nature criteria. Compared with surface species of freshwater snails, stygosnail conservation is uniquely hindered by difficulties associated with accessing subterranean habitats for monitoring and management. Furthermore, only three species were found to have federal protection in either the United States or Mexico, and current laws regulating wildlife and water pollution at the state and federal level may be inadequate for protecting stygosnail habitats. As groundwater systems continue to be manipulated and relied on by humans, groundwater-restricted fauna such as stygosnails should be studied so unique biodiversity can be protected.  相似文献   
855.
Food and Environmental Virology - The involvement of the gastrointestinal (GI) tract in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has been reported in multiple studies....  相似文献   
856.
Environmental Science and Pollution Research - The chronic toxicity of diclofenac (DCF) and carbamazepine (CBZ) as separate substances and in conjunction with their mixture on Daphnia magna was...  相似文献   
857.
A central tenet of landscape ecology is that mobile species depend on complementary habitats, which are insufficient in isolation, but combine to support animals through the full annual cycle. However, incorporating the dynamic needs of mobile species into conservation strategies remains a challenge, particularly in the context of climate adaptation planning. For cold-water fishes, it is widely assumed that maximum temperatures are limiting and that summer data alone can predict refugia and population persistence. We tested these assumptions in populations of redband rainbow trout (Oncorhynchus mykiss newberrii) in an arid basin, where the dominance of hot, hyperproductive water in summer emulates threats of climate change predicted for cold-water fish in other basins. We used telemetry to reveal seasonal patterns of movement and habitat use. Then, we compared contributions of hot and cool water to growth with empirical indicators of diet and condition (gut contents, weight–length ratios, electric phase angle, and stable isotope signatures) and a bioenergetics model. During summer, trout occurred only in cool tributaries or springs (<20 °C) and avoided Upper Klamath Lake (>25 °C). During spring and fall, ≥65% of trout migrated to the lake (5–50 km) to forage. Spring and fall growth (mean [SD] 0.58% per day [0.80%] and 0.34 per day [0.55%], respectively) compensated for a net loss of energy in cool summer refuges (–0.56% per day [0.55%]). In winter, ≥90% of trout returned to tributaries (25–150 km) to spawn. Thus, although perennially cool tributaries supported thermal refuge and spawning, foraging opportunities in the seasonally hot lake ultimately fueled these behaviors. Current approaches to climate adaptation would prioritize the tributaries for conservation but would devalue critical foraging habitat because the lake is unsuitable and unoccupied during summer. Our results empirically demonstrate that warm water can fuel cold-water fisheries and challenge the common practice of identifying refugia based only on summer conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号