首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
基础理论   6篇
污染及防治   3篇
  2022年   2篇
  2021年   1篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 328 毫秒
1
1.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   
2.
3.
Environmental Science and Pollution Research - The exhaust emissions from the compression ignition engines are harmful to both human beings and the environment. After-treatment devices placed in...  相似文献   
4.
Larvae of the slipper limpet Crepidula onyx metamorphose in response to marine biofilms. In this study, we investigated how the percentage of larval metamorphosis in this species was affected by biofilms that differed in certain attributes. To manipulate bacterial and diatom cell densities and community composition, we developed biofilms in the laboratory (1) at different temperatures (16, 23 and 30°C) and salinities (20, 27 and 34‰), (2) with or without addition of antibiotics, and (3) in the light or in the dark. We also allowed biofilms to develop at three field sites with different prevailing environmental conditions so as to generate biofilms with different, but natural, attributes. Bacterial and diatom community composition in biofilms were determined using a DNA fingerprinting technique and microscopic examination, respectively. The effects of biofilms on metamorphosis were investigated in laboratory assays. The percentage of larval metamorphosis correlated with bacterial and diatom cell densities in only one of the three experiments conducted, but was substantially affected by differences in bacterial and diatom community composition in all three experiments. It also appears that metamorphosis of C. onyx depends on the simultaneous presence of both bacterial and diatom communities in biofilms.  相似文献   
5.
This study demonstrates that the timing of larval starvation did not only determine the larval quality (shell length, lipid content, and RNA:DNA ratio) and the juvenile performance (growth and filtration rates), but also determine how the latent effects of larval starvation were mediated in Crepidula onyx. The juveniles developed from larvae that had experienced starvation in the first two days of larval life had reduced growth and lower filtration rates than those developed from larvae that had not been starved. Lower filtration rates explained the observed latent effects of early larval starvation on reduced juvenile growth. Starvation late in larval life caused a reduction in shell length, lipid content, and RNA:DNA ratio of larvae at metamorphosis; juveniles developed from these larvae performed poorly in terms of growth in shell length and total organic carbon content because of “depletion of energy reserves” at metamorphosis. Results of this study indicate that even exposure to the same kind of larval stress (starvation) for the same period of time (2 days) can cause different juvenile responses through different mechanisms if larvae are exposed to the stress at different stages of the larval life.  相似文献   
6.
Using CO2 perturbation experiments, we examined the pre- and post-settlement growth responses of a dominant biofouling tubeworm (Hydroides elegans) to a range of pH. In three different experiments, embryos were reared to, or past, metamorphosis in seawater equilibrated to CO2 values of about 480 (control), 980, 1,480, and 2,300 μatm resulting in pH values of around 8.1 (control), 7.9, 7.7, and 7.5, respectively. These three decreased pH conditions did not affect either embryo or larval development, but both larval calcification at the time of metamorphosis and early juvenile growth were adversely affected. During the 24-h settlement assay experiment, half of the metamorphosed larvae were unable to calcify tubes at pH 7.9 while almost no tubes were calcified at pH 7.7. Decreased ability to calcify at decreased pH may indicate that these calcifying tubeworms may be one of the highly threatened species in the future ocean.  相似文献   
7.
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.  相似文献   
8.
Environmental Science and Pollution Research - Groundwater vulnerability assessment using the fuzzy logic technique is attempted in this study. A hierarchical fuzzy inference system is created to...  相似文献   
9.
Environmental Science and Pollution Research - Owing to the depletion of natural resources, new alternative materials are emerging in construction industry. Especially, development of alternative...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号