首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   43篇
  国内免费   31篇
安全科学   4篇
综合类   105篇
基础理论   12篇
污染及防治   4篇
评价与监测   8篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   1篇
  2015年   6篇
  2014年   9篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2000年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
91.
典型工业恶臭源恶臭排放特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
恶臭污染具有主观性和复杂性特点,结合使用仪器分析和嗅觉方法,可以从成分和感官两方面充分反映恶臭污染特征.本文参考USEPA TO14A和GB/T 14675-93方法,选择天津滨海新区内的6个不同类型的工业恶臭源,包括制药、喷漆、炼油、石化、树脂合成和橡胶,采集了各类源工艺流程中通过有组织方式排放的恶臭废气,测定了废气的感官臭气浓度并定量分析了其中的恶臭VOCs物质.使用臭气浓度、恶臭指数及统计学方法进行研究,结果发现,炼油源和制胶源的废气具有非常严重的感官刺激性.甲硫醇等硫化物是炼油源和制胶源的主要特征恶臭物质;苯乙烯和甲苯分别是合成树脂源和喷涂源的特征恶臭组分;对苯二甲酸(PTA)源和制药源属于混合型恶臭源.甲苯是喷漆源和制药源的标识组分;二硫化碳是制胶源的标识组分;间,对-二甲苯可以用来标识石化PTA污染源;炼油源的标识组分为三氯乙烯、氯乙烷和1,2-二溴乙烷;苯乙烯是合成树脂源的标识组分.  相似文献   
92.
乌鲁木齐空气颗粒物中PAHs碳同位素组成及来源解析   总被引:4,自引:0,他引:4       下载免费PDF全文
报道了乌鲁木齐城区空气颗粒物中多环芳烃(PAHs)化合物的稳定碳同位素组成特征,解析了PAHs的来源.气相色谱/燃烧系统/同位素质谱分析表明,该市空气颗粒物中PAHs化合物的δ13C值为-23.5‰~-31.3‰,随着分子量的增大,PAHs化合物中13C含量降低.利用同位素质量平衡二元模型,计算了燃煤污染源与机动车排气对城区苯并(a)芘、茚并(1,2,3-cd)芘和苯并(ghi)苝的贡献,前者分别为72%、97%和95%,后者分别为28%、3%和5%.苯并(a)芘、茚并(1,2,3-cd)芘和苯并(ghi)苝的相对含量分别为2.8%,29.1%和25.1%,占PAHs总量的57%,计算的三者的燃煤污染源总贡献量为78.6%,与利用化学质量平衡模型计算得出的结果(84%的PAHs源于燃煤)相近.  相似文献   
93.
天津市大气降水化学组分变化趋势及来源研究   总被引:7,自引:1,他引:7  
2001—2013年对天津市降水样品进行了采集,分析了p H、电导率(EC)、主要离子浓度(SO2-4、NO-3、Cl-、F-、NH+4、Ca2+、Mg2+、Na+、K+).结果表明:2001—2013年,降水的雨量加权平均p H、EC分别为5.48、87μS·cm-1.降雨的p H、EC及总离子当量浓度呈现上升趋势,酸雨频率呈现下降趋势.降水中各离子雨量加权平均当量浓度排列顺序为:SO2-4Ca2+NH+4NO-3Cl-Mg2+Na+F-K+,SO2-4、Ca2+、NH+4和NO-3是降水中的主要离子,占离子总量的84.8%.SO2-4雨量加权平均当量浓度表现为先轻微上升,后显著下降趋势.NO-3、Ca2+雨量加权平均当量浓度表现为明显上升趋势.NH+4雨量加权平均当量浓度显示为下降趋势.F-、Cl-、K+、Mg2+、Na+等雨量加权平均当量浓度变化趋势基本保持平稳.SO2-4对总阴离子的分担率、NH+4总阳离子的分担率均呈现下降趋势.NO-3对总阴离子的分担率、Ca2+对总阳离子的分担率均呈现明显上升趋势.[NO-3]/[SO2-4]、[Ca2+]/[NH+4]呈现出明显上升趋势.富集因子计算结果表明:Ca2+主要来自地壳.Mg2+和K+部分来自海源输入,但绝大部分来自地壳.大部分Cl-来自海源的输入,其余小部分来自地壳和人为排放.降水中SO2-4、NO-3主要来自人为活动.  相似文献   
94.
2007年2月在攀枝花市不同功能区采集了大气PM10样品42个和污染源样品32个,采用超声抽提GC/MS方法测定分析了16种多环芳烃(PAHs)的含量。结果显示攀枝花市PM10颗粒相PAHs单体浓度范围为0.34~416.45ng/m3,总量浓度范围为24.56~2569.66ng/m3;攀枝花市5个采样点中河门口片区PM10多环芳烃单体浓度范围为5.64~416.45ng/m3,污染最严重。源样品测定结果分别为扬尘78.74ug/g,煤烟尘6.12ug/g,钢铁工业尘30.54ug/g,焦化尘3187.42ug/g。应用比值法和化学质量平衡(CMB)模型对污染源进行识别,燃煤和炼焦是攀枝花市PAHs的主要来源,对攀枝花市大气可吸入颗粒物中多环芳烃污染的分担率分别为55.8%、19.9%。  相似文献   
95.
大气颗粒物酸缓冲能力来源解析技术与应用   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了大气颗粒物酸缓冲能力的表征方法,测定了天津市区不同源类的酸缓冲能力;建立了基于二重源解析技术(NCMB)的TSP酸缓冲能力来源识别技术,阐述了其技术原理,并在天津城区加以应用.结果表明,大气中颗粒物浓度和降雨量是影响天津城区降雨pH值的关键因素;颗粒物的酸缓冲能力主要来源于城市扬尘、建筑水泥尘和土壤风沙尘等开放源.开放源污染是现阶段决定天津城区酸雨发展的关键因素之一.  相似文献   
96.
大气环境监测数据的质控,特别是异常数据的精准判别是准确分析大气污染成因的重要前提.目前对于异常值的判别主要基于人工经验,这对于快速有效地从海量环境数据中剔除异常值进而保证分析数据的准确性带来巨大挑战.结合大气污染物监测数据的时间序列波动特点,本文基于滑动窗口机制和统计学指标分别构建了滑动四分位、滑动四分位差距及滑动标准差等异常值快速判别方法,然后利用含有异常值的清洁天和污染天常规大气污染物(PM2.5、PM10、SO2、NO2、CO和O3)时间序列数据对3种异常值判别方法的有效性进行测试评估,从而得到不同污染物异常值判别的最优方法及相关参数指标.结果表明:无论是清洁天还是污染天,滑动四分位法对PM2.5、PM10、SO2、NO2、CO和O3浓度时间序列异常值的判别效果均最优.其中,清洁天最优滑动窗口长度范围分别为10~16、14~16、12~16、38~40、6~38和...  相似文献   
97.
城市扬尘污染主要成因与精准治尘思路   总被引:1,自引:1,他引:0  
扬尘是城市环境空气颗粒物的重要贡献源.为进一步提升扬尘污染防治水平,梳理总结了城市扬尘排放与贡献特征,剖析了城市扬尘污染的主要成因,明确主要起尘情景和关键控制指标,并针对性提出主要防治措施建议,以进一步完善"精准治尘"的思路.各扬尘源类中,道路扬尘和施工扬尘是对城市环境空气颗粒物贡献的主要源类,其中通常以道路更为突出....  相似文献   
98.
天津市臭氧污染现状与污染特征分析   总被引:21,自引:17,他引:4  
通过臭氧监测实验,系统研究了天津市城区的臭氧污染现状、污染特征和时空分布规律,并从空间上确定了城市城区易发生光化学污染的敏感区域、高发区域.  相似文献   
99.
杭州市大气PM2.5和PM10污染特征及来源解析   总被引:10,自引:0,他引:10  
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。  相似文献   
100.
为了研究在线离子色谱法测定大气PM2.5中NH4^+、NO3^-、SO4^2-的不确定性来源,探讨了标准曲线的浓度范围及浓度梯度设置对离子浓度结果的影响,并对标准曲线设定方案进行了优化。结果表明:不同浓度范围的标准曲线对于NH4+的浓度结果有较大的影响,存在1. 87%~14. 91%的偏差,对于NO3^-、SO4^2-的影响较小,相对偏差分别为2. 94%和2. 82%;非均匀布点和均匀布点标准曲线定量NH4+的结果存在4. 15%~4. 25%的偏差,对于NO3^-和SO4^2-,相对偏差分别为0. 10%和5. 99%。对于二次拟合的NH4^+,在样品浓度波动较大时,可以将样品划分为低浓度范围和高浓度范围,分别选用低浓度段标准曲线和高浓度段标准曲线,以期得到更合理的浓度结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号