首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   0篇
  国内免费   119篇
环保管理   10篇
综合类   119篇
基础理论   37篇
污染及防治   61篇
评价与监测   9篇
社会与环境   10篇
灾害及防治   1篇
  2024年   11篇
  2023年   22篇
  2022年   14篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   7篇
  2014年   11篇
  2013年   16篇
  2012年   21篇
  2011年   25篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   10篇
  2006年   13篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有247条查询结果,搜索用时 859 毫秒
201.
Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems. The key issue is the development of high-efficiency photocatalysts. Various strategies in the state-of-the-art advancements, such as heterostructure construction, heteroatom doping, metal/single atom loading, and defect engineering, have been presented for the graphitic carbon nitride (g-C3N4)-based nanocomposite catalysts to design their surface chemical environments and internal electronic structures to make them more suitable for different photocatalytic applications. In this review, nanoarchitecture design, synthesis methods, photochemical properties, potential photocatalytic applications, and related reaction mechanisms of the modified high-efficiency carbon nitride-based photocatalysts were briefly summarized. The superior photocatalytic performance was identified to be associated with the enhanced visible-light response, fast photoinduced electron-hole separation, efficient charge migration, and increased unsaturated active sites. Moreover, the further advance of the visible-light harvesting and solar-to-energy conversions are proposed.  相似文献   
202.
Evaluationonabundanceordeficiencyofavai-labletraceelementsinsoilofmiddleareainChinaandtheeffectofapplyingtraceelementfertiliz...  相似文献   
203.
The air-dust samples collected from petro-chemical industrial region in the suburb of Lanzhou and from a certain rural region 64 km away from the city were extracted, with a mixed solvent (benzene: hexane: isopropanol=7:2:1) for 8 hours. A strong free radical signal at g= 2.00 of air-dust itself and a hyperfine splitting EPR signal of extract from air-dust have been detected. The sister chromatid exchange frequency (SCE) was increased by extracts of both dusts from the industrial region and from the rural region. If a chemical is able to increase SCE up to twice as high as the control, this chemical is considered to be mutagenic and/or carcinogenic. The double SCE frequency concentration is 23 μg/ml for the dust extract obtained from the industrial region and 47μg/ml for that from the rural region. Extracts were able to damage to DNA template. Results indicated that the mutagenicity and/or carcinogenicity of the extracts obtained from the petro-chemical industrial region were stronger than that of the  相似文献   
204.
EfectsofmainrangeandstrengthfactorsonchangeofCODinashalowlakeFanChengxinNanjingInstituteofGeographyandLimnology,ChineseAcad...  相似文献   
205.
This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region,accounting for the dynamic and stochastic character of meteorological conditions.This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model.The model is demonstrated by using a realistic air urban-scale SO2 control problem in the Yuxi City of China.To evaluate effectiveness of the model,results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents‘ health.Finally,a discussion of the areas for further research are briefly delineated.  相似文献   
206.
Three columns each with 770 cm2 of surface area and 60-105 cm effective depth were set up for this study. These columns were filled with compacted, stabilized refuse. High-strength brewery wastewaters were uniformly trickled down the medium. Overall, 16 runs with various organic loadings were tested and the results demonstrated that the stabilized refuse had excellent capability in removing chemical oxygen demand (COD). The COD removal efficiency reached 95% at a depth of 60 cm at Q = 8 L/day for the initial COD of approximately 6000 mg/L and the efficiency increased to >99% at a depth of 90 cm (organic loading of 0.69 kg/m3/day). As would be expected, the filter performance is a function of flow rate, influent COD concentration, and bed depth. The Schulze equation is able to predict the COD removal performance well. The variations of pH, oxidation reduction potential, and volatile fatty acids indicated that the acidogenesis reaction occurred in the upper layers.  相似文献   
207.
Cryptosporidium in WWTPs in a cold region was investigated in different seasons. • The overall removal efficiency of Cryptosporidium in WWTPs was over 84%. • The infectivity rate declined below 53% in effluents mainly due to disinfection. • The infectivity of Cryptosporidium increased with a seasonal drop in temperature. • Low temperature promotes binding protein retention and virulence genes expression. This study investigated the occurrence, species, infectivity and removal efficiency of Cryptosporidium spp. across typical wastewater treatment train. Samples from different process units were collected seasonally and synchronously from four wastewater treatment plants (WWTPs) in Northeastern China. Live Cryptosporidium oocysts were identified in most samples from both influent (97.50%) and effluent (90.00%) wastewaters of the four WWTPs, at an average density of 26.34 and 4.15 oocysts/L, respectively. The overall removal efficiency was 84.25%, and oocysts were mainly removed (62.01%) by the modified secondary sedimentation process. Ten Cryptosporidium species were identified in the effluent samples. C. andersoni, C. bovis, and C. ryanae were the three most prevalent species. Oocyst viability assays indicated no reduction of excystation rate during the primary and secondary wastewater treatments (varied in the range of 63.08%–68.50%), but the excystation rate declined to 52.21% in the effluent after disinfection. Notably, the Cryptosporidium oocysts showed higher infection intensity in the cold season (winter and spring) than that in summer and autumn. The influences of environmental temperature on virulence factors of Cryptosporidium were further examined. It was observed that more extracellular secretory proteins were bound on the oocyst surface and several virulence genes were expressed relatively strongly at low temperatures, both of which could facilitate oocyst adhesion, invasion, and host immune evasion. This research is of considerable interest since it serves as an important step towards more accurate panoramic recognition of Cryptosporidium risk reduction in WWTPs, and especially highlights the potential health risk associated with Cryptosporidium in cold regions/seasons.  相似文献   
208.
The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy(FTIR), Solid carbon nuclear magnetic resonance spectroscopy(CNMR)), silicon-29 nuclear magnetic resonance spectroscopy(Si NMR)), and X-ray diffraction spectroscope((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy(FTIR)),scanning electron microscopy(SEM)), and X-ray photoelectron spectroscopy((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II)followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430 mg/g. Thus, the waste linear low-density polyethylene-g-poly(acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.  相似文献   
209.
CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R2, the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion.  相似文献   
210.
Removal of tetracycline from water by Fe-Mn binary oxide   总被引:2,自引:0,他引:2  
Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments. A series of Fe-Mn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal. Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide, and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios. The tetracycline removal was highly pH dependent. The removal of tetracycline decreased with the increase of initial concentration, but the absolute removal quantity was more at high concentration. The presence of cations and anions such as Ca2+, Mg2+, CO32- and SO42- had no significant effect on the tetracycline removal in our experimental conditions, while SiO32- and PO43- had hindered the adsorption of tetracycline. The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface. This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号