首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   60篇
  国内免费   206篇
安全科学   9篇
环保管理   3篇
综合类   318篇
基础理论   13篇
污染及防治   68篇
评价与监测   1篇
  2024年   2篇
  2023年   4篇
  2022年   10篇
  2021年   7篇
  2020年   11篇
  2019年   21篇
  2018年   13篇
  2017年   12篇
  2016年   18篇
  2015年   19篇
  2014年   22篇
  2013年   10篇
  2012年   9篇
  2011年   13篇
  2010年   29篇
  2009年   45篇
  2008年   30篇
  2007年   15篇
  2006年   27篇
  2005年   14篇
  2004年   26篇
  2003年   13篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   10篇
  1997年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有412条查询结果,搜索用时 22 毫秒
51.
针对剩余污泥水解酸化产生大量多糖、蛋白质和VFAs碳源的同时会有较高浓度的NH+4-N和PO3-4-P溶出的问题,考察了pH值和元素摩尔比对以沉淀法同时去除NH+4-N和PO3-4-P的影响.结果表明,最佳pH为9.0,当pH升高到10.0时NH+4-N去除率略有下降,在特定摩尔比范围内摩尔比对沉淀形成的影响大于pH值...  相似文献   
52.
常温内源反硝化脱氮过程中pH和ORP变化规律   总被引:4,自引:0,他引:4  
采用SBR反应器,在25℃下,以不同比例的NO3^-N和NO2^--N作电子受体,对内源反硝化脱氮过程中的pH、ORP变化进行了研究。结果表明,ORP在内源反硝化过程中呈现逐渐减小的趋势,当反硝化结束时突然大幅度降低而出现特征点;内源反硝化过程中的pH值变化则与起始pH值和硝态氮浓度有关,当初始pH值较小、硝态氮浓度较低时,内源反硝化过程中pH极大值只出现一次,pH值呈现出先增大后减小的规律性变化,指示反硝化结束的特征点准确出现;当初始pH值较高、或者硝态氮浓度足够高时,则pH值在反应后期将维持在某个值附近并波动,指示反硝化结束的特征点不明显,此种情况下,以ORP来指示内源反硝化过程的结束较为可靠。  相似文献   
53.
根据A/O脱氮工艺的运行状况和影响因素 ,提出了应用在线传感器连续测定曝气池中DO浓度、氨氮浓度和硝酸氮浓度 ,并据此调节供氧强度、内循环回流量、有机碳源的投加以及硝化区和反硝化区的大小 ,这是保证A/O脱氮工艺良好处理效果的重要控制策略和思想。同时对近年来国外A/O脱氮工艺自动控制的应用及研究进行了简单的回顾。  相似文献   
54.
低碳城市污水反硝化除磷试验   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR),基于缺氧吸磷理论,在(AO)-SBBR运行过程中引入一个缺氧段形成了一个全新的(AO)2-SBBR运行系统,经过4个阶段的培养驯化,反硝化除磷菌占全部聚磷菌数量的比例从14.82%增长到63.04%。在进水CODCr、总磷、总氮和氨氮浓度分别为156.41、4.64、33.08和30.64mg/L的条件下,出水总磷、总氮和氨氮浓度分别为1.06、17.55和4.32mg/L,相应去除率分别达到77.15%、46.94%和85.9%,有效解决了低碳城市污水同步脱氮除磷过程中有机物不足的问题。  相似文献   
55.
近期,氨氧化古菌(ammonia-oxidizing archaea,AOA)在各类环境中的发现,打破了人们原来认为氨氧化主要是由氨氧化细菌(ammonia-oxidizing bacteria,AOB)完成的观点.但是在全程自养脱氮(completely autotrophic nitrogen removal over nitrite,CANON)污水处理系统中关于AOA的研究却鲜有提及.利用PCR、克隆、实时荧光定量PCR(quantitative real time PCR,q PCR)等分子生物学技术,对1个小试(lab-scale,L)和1个中试(pilot-scale,P)CANON系统中的生物膜和活性污泥絮体两种形态的污泥进行AOA数量和种属特征的研究.结果表明:1系统L和P中,AOA的amo A基因数量平均值(以dry sludge计)分别为2.42×106copies·g-1和6.51×106copies·g-1;2 AOA的amo A基因丰度随污泥形态不同数量相差很大:L系统中,生物膜AOA amo A丰度约为活性污泥絮体的11.1~15.1倍;P系统中,污泥絮体AOA amo A数量是生物膜中的2.8倍;3多样性方面:P系统的AOA多样性较低,仅出现一个OTU,该OTU属于Nitrosopumilus subcluster 5.2类群;L系统AOA多样性较高,共有8个OTU出现,分别属于Nitrososphaera subcluster 9、subcluster 8.1、subcluster 4.1、subcluster 1.1和Nitrosopumilus subcluster 5.2这5个类群.总之,在同一个CANON系统中,污泥形态不同,AOA的丰度和群落结构相差较大;AOA可能发挥着氨氧化的作用.  相似文献   
56.
高氮城市生活垃圾渗滤液短程生物脱氮   总被引:5,自引:2,他引:5  
采用"两级UASB-缺氧-好氧系统"处理高COD与高NH4 -N的城市生活垃圾渗滤液.180天的试验结果表明:UASB1(一级UASB)与UASB2(二级UASB)最大COD去除速率分别为12.5、8.5 kg·m-3·d-1,UASB1的NOx--N的最大去除速率为3.0 kg·m-3·d-1.系统COD去除率为80%~92%,出水COD为800~1500 mg·L-1.原渗滤液的NH 4-N为1100~2000 mg·L-1,A/O工艺的最大NH4 -N去除速率为0.68kg·m-3·d-1;在17~30℃,通过NO-2-N累积率为90%~99%的短程硝化,NH4 -N的去除率在99%左右,出水NH4 -N小于15 mg·L-1.回流处理水和二沉池回流污泥中的NOx--N分别在UASB1和A/O工艺的缺氧段实现完全反硝化,使系统无机氮TIN去除率达80%~92%.同时高效的反硝化为硝化提供了充足的碱度,使A/O工艺pH大于8.5,维持较高的游离氨浓度,结果表明,高游离氨(FA)是导致短程硝化的主要因素.以pH作为控制参数调控A/O工艺的曝气时间,可以有效的抑制亚硝酸盐氧化菌(NOB)的增长,实现种群优化和稳定的短程硝化.  相似文献   
57.
SBR法常、低温下生活污水短程硝化的实现及特性   总被引:8,自引:1,他引:8       下载免费PDF全文
采用序批式反应器(SBR)处理实际生活污水,通过实时控制好氧曝气时间,在常温下快速实现短程硝化,并在低温下长期维持稳定的短程硝化.结果表明,随着温度逐渐降低,比氨氧化速率略微减缓,27℃的平均比氨氧化速率是13℃时的1.68倍,但亚硝化积累率始终维持在90%以上,该温度区间内氨氧化反应的温度系数为1.051.通过荧光原位杂交(FISH)技术对低温下维持稳定短程硝化的污泥进行种群分析发现,实时控制策略为氨氧化菌(AOB)成为优势硝化菌群创造了有利条件,AOB的相对百分含量达到8%~9%,而亚硝酸盐氧化菌(NOB)逐渐被淘洗出反应器.在低温下要实现短程硝化,可首先在常温下利用好氧曝气时间实时控制实现亚硝态氮的积累和AOB的优势生长,然后通过逐渐降温使AOB适应在低温下生长.  相似文献   
58.
以DO、ORP、pH作为两段SBR工艺的实时控制参数   总被引:20,自引:0,他引:20       下载免费PDF全文
介绍了在传统SBR脱氮工艺的基础上 ,开发的用于处理COD和氮浓度较高的工业废水的两段SBR系统 (TSSBR) .根据传统SBR工艺在反应过程中 ,当COD不再被降解 ,而硝化反应又没有开始时 ,DO迅速大幅度升高以及pH曲线上出现的拐点 ,可以将COD降解与硝化反应分割开 ,先后在不同的反应器内进行 ,分别命名为SBR1和SBR2 ,避免高COD浓度对硝化反应的冲击 ,提高处理效率 .利用在线检测的DO、ORP和pH参数实时控制SBR1、SBR2各个生化过程的反应时间 ,解决了两段SBR系统的自动控制问题 ,可以使系统长期稳定运行 ,保证出水水质 ,节约能耗 .采用实时控制策略 ,并控制系统温度在 3 0℃左右 ,可将SBR2的硝化反应控制在亚硝酸型硝化结束 .采用该工艺处理石化废水 ,COD去除率达到 90 %~ 95 % ,3 0℃时的比硝化反应速率达到 0 3kg(NH4 N) (kg(MLSS)·d) ,出水已检测不出氨氮和硝态氮  相似文献   
59.
A~2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷   总被引:8,自引:0,他引:8  
以低C/N比实际生活污水为研究对象,重点考查了A2/O-曝气生物滤池生化系统的脱氮除磷特性.同时,考虑到A2/O工艺的主要功能是除磷及反硝化,而曝气生物滤池则以硝化为目的.因此,通过缩短A2/O的泥龄,可将硝化过程从A2/O中分离出去,让曝气生物滤池完成硝化,实现硝化菌和聚磷菌的分离,并解决了硝化菌和聚磷菌泥龄之间的矛盾.试验结果表明,该生化系统可实现有机物、氮和磷的同步去除.在平均C/N比为4.2,内回流比R为250%的条件下,平均进水COD、TN、TP分别为239.9、57.3和5.1mg·L-1,平均最终出水COD、TN、TP分别为34.1、13.3和0.1mg·L-1,去除率分别为85.8%、76.9%和98.3%.曝气生物滤池对氨氮几乎保持了100%的去除率.序批试验表明,反硝化聚磷菌占聚磷菌的比例为40.5%.  相似文献   
60.
盐度对污水硝化过程中N_2O产量的影响   总被引:1,自引:0,他引:1  
采用调节盐度(7.5 g/L)和未调节盐度(0.1 g/L)实际生活污水驯化的活性污泥,分别考察了其相应硝化过程中N2O的产量和转化率.结果表明,盐度7.5 g/L生活污水硝化过程中N2O产量是未调节盐度N2O产量的2.85倍.考察其他盐度下污水硝化过程中N2O产量与转化率的结果表明,盐度从7.5 g/L降低到5.0、2.5 g/L后,N2O产量变化不大,但系统比氨氧化速率随着盐度的下降有所增加;当盐度从7.5 g/L急剧增加到10 g/L后,硝化过程中N2O产量和转化率均有大幅升高,产量达到7.5 g/L时的2.2倍,比氨氧化速率大幅下降.因此处理含盐污水时,应尽量避免盐度的过高波动,防止污水硝化过程中N2O产量和转化率大幅地升高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号