首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   47篇
  国内免费   110篇
安全科学   67篇
废物处理   17篇
环保管理   35篇
综合类   311篇
基础理论   60篇
污染及防治   39篇
评价与监测   17篇
社会与环境   9篇
灾害及防治   21篇
  2024年   6篇
  2023年   14篇
  2022年   14篇
  2021年   8篇
  2020年   26篇
  2019年   21篇
  2018年   16篇
  2017年   15篇
  2016年   12篇
  2015年   16篇
  2014年   24篇
  2013年   17篇
  2012年   30篇
  2011年   16篇
  2010年   21篇
  2009年   29篇
  2008年   21篇
  2007年   22篇
  2006年   21篇
  2005年   13篇
  2004年   15篇
  2003年   24篇
  2002年   21篇
  2001年   11篇
  2000年   16篇
  1999年   23篇
  1998年   15篇
  1997年   12篇
  1996年   5篇
  1995年   21篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有576条查询结果,搜索用时 15 毫秒
141.
研究土壤垂直剖面CO_2通量的分布是了解生态系统碳循环的重要环节.本研究以亚热带杉木幼林为研究对象,于2014年5月至2015年5月,采用气井法结合Fick扩散法则和扩散系数模型计算15、30、60 cm各层土壤的CO_2通量,探讨增温对其影响.结果表明:杉木幼林土壤增温影响可至60 cm土层,增温显著降低了各层土壤含水量(p0.05).增温显著增加了杉木幼林土壤CO_2通量(p0.05),深层尤为显著;增温处理(W)后15、30、60 cm土层的土壤CO_2通量年均值分别为1.35、0.73和0.36μmol·m-2·s-1,比对照(CT)相应增加了36%、180%和192%,并且增温显著影响了土壤基础呼吸速率F10和土壤温度敏感性指数Q10(p0.05).土壤温度和含水量能够共同解释各层土壤CO_2通量季节变异的62%~87%,且增温处理后其R2增大.双因子模型拟合结果优于单因子模型.增温能够增加土壤呼吸,对全球大气CO_2浓度升高具有正反馈作用.  相似文献   
142.
自动增氧型潜流人工湿地处理农村生活污水的研究   总被引:43,自引:0,他引:43  
采用人工配水模拟太湖地区农村生活污水水质,利用改进的自动增氧型潜流人工湿地对其进行处理,结果表明:COD、NH4 -N、TP进水浓度分别在132.4~392.6mg·L-1、21.58~50.26mg·L-1、3.60~13.17mg·L-1范围内变化时,COD、NH4 -N、TP的去除负荷随着进水浓度的升高而增大,其最高去除负荷分别为226.38 kg·d-1·hm-2、44.40 kg·d-1·hm-2、10.44 kg·d-1·hm-2,相应的去除率为89.45%、88.93%、90.25%,且系统有较强的抗冲击负荷能力.  相似文献   
143.
正车陂:大隐于市的千年古村位于广州天河区闹市之中的车陂村,见证和记录了广州都市化的过程,是远近闻名的城中村。时间的车轮回转到百余年前,车陂则有另外一番面貌。已有千年历史的车陂村,古称龙溪,得名于建村始祖,南宋大学士兼兵部尚书王道夫之裔孙王龙溪。一条全长18.6公里的车陂涌环绕着村落,使之成为广府地区端午节期间龙舟竞渡的重要组成部  相似文献   
144.
化肥减量对紫色土坡耕地磷素流失的影响   总被引:3,自引:0,他引:3  
采用人工径流小区对紫色土坡耕地降雨产流、磷素流失浓度进行定点观测,研究不施肥(CK)、常规施肥(T1)、优化施肥(T2)、化肥减量配施秸秆(T3)4种不同处理对紫色土坡耕地磷素在地表径流、壤中流中流失的影响.结果表明,壤中流是紫色土坡耕地的主要产流方式,占比高达70%以上,其中磷素主要通过泥沙、地表径流2个途径流失.化...  相似文献   
145.
武汉市与西安市颗粒物PM_(10)、PM_(2.5)的污染水平分析   总被引:1,自引:0,他引:1  
利用武汉、西安两市2013年PM10与PM2.5的监测数据,统计分析了武汉市和西安市PM10与PM2.5的污染水平,并比较了两城市的污染水平。根据GB 3095—2012《中华人民共和国环境空气质量标准》规定的二级浓度限值,可知武汉市和西安市PM2.5的污染都非常严重,PM10的污染相对较轻。从整体上说,西安市的污染水平要比武汉市严重,其中西安市PM10中PM2.5约占79%。武汉市和西安市的相关部门都应重视PM10和PM2.5的污染问题。  相似文献   
146.
为解决废旧电子线路板金属检测过程中所遇到的金属分布不均匀以及金属难以浸取问题,采取适当的样品前处理和样品全分析法。通过对样品进行适当前处理,先灼烧破坏其有机物,再以王水全部溶解样品,在一定条件下,碘量法测定铜、原子吸收光谱法测定镍和银,相对标准偏差均小于3.5%。  相似文献   
147.
为了控制区域酸沉降污染,需要制定科学的区域大气酸沉降控制目标.本研究建立了应用VSD动态模型的多点位模拟和累积频率分布曲线统计方法,通过模拟各酸沉降情景下某一目标年区域内土壤理化特性的变化确定其酸沉降控制目标.将此方法应用于广州-东莞-惠州地区,在现场测量区域内25点位土壤特征的基础上,应用VSD模型模拟各点位土壤特征对酸沉降的响应,再将模拟结果绘制成累积频率分布曲线,据此确定该区域酸沉降控制目标.结果表明,单独控制S沉降时,若使得该区域生态保护率达到80%,则短期和长期S沉降的控制目标分别为7.68~12g/(m2×a)和10.24~16g/(m2×a);若生态保护率为95%,短期和长期S沉降控制目标分别为5.12~8g/(m2×a)和7.68~12g/(m2×a).同时控制S和BC沉降时,若生态保护率为80%,当BC沉降为6.4~12.8g/(m2×a)时,短期和长期S的控制目标分别为2.56~4g/(m2×a)和5.12~8g/(m2×a);当BC沉降为4.8~9.6g/(m2×a)时,S的控制目标为2.56~4g/(m2×a).若生态保护率为95%,当BC沉降为6.4~12.8g/(m2×a)时,短期和长期S的控制目标分别为0.64~1g/(m2×a)和5.12~8g/(m2×a);当BC沉降为4.8~9.6g/(m2×a)时,短期和长期S的控制目标分别为0.64~1g/(m2×a)和2.56~4g/(m2×a);当BC沉降量降至2~4g/(m2×a),则80%和95%生态保护率下的S控制目标均为0.64~1g/(m2×a).  相似文献   
148.
亚热带典型小流域磷收支及流失特征对比研究   总被引:3,自引:1,他引:3  
磷素(P)在环境中的过量累积是导致农业面源污染的主要因素。论文以湖南省长沙县脱甲河农区小流域(52 km2)和涧山河森林-农区小流域(50 km2)为研究单元,基于入户调查资料和连续4 a的流域把口站水文水质定位观测数据,采用物质流分析法,对比研究了亚热带丘陵区典型小流域P的收支平衡及流失特征。结果表明,农区小流域出口地表水总磷(TP)含量变化为0.03~0.68 mg·L-1,平均含量为0.21 mg·L-1,整体达到Ⅲ类水质标准;森林-农区小流域TP含量变化范围为0.01~0.35 mg·L-1,平均为0.08 mg·L-1,整体为Ⅱ类水质,表明森林-农区小流域地表水水质明显优于农区小流域。农区小流域P的环境滞留强度(32.0 kg·hm-2·a-1)显著高于森林-农区小流域(20.6 kg·hm-2·a-1),对环境影响更大。以2013年为例,农区小流域P的主要输入项为饲料,占53.1%,森林-农区小流域则以肥料为主,占53.0%;两个流域的P输出项都以植物和畜禽产品输出为主,均占总输出量的94.0%左右。控制小流域肥料和饲料投入、增加循环利用途径以及提高P利用率是当前减轻水体富营养化的有效途径。  相似文献   
149.
陈德淦  初志春 《环境》2000,(8):32-32
广东大亚湾核电站自1994年投产以来,按照核安全和环保的有关法规,并参考国际上先进的环境管理经验,建立并形成了一套完整的以保护公众、保护环境为宗旨的核电站环境管理体系。这些体系包括:以安全运行为中心的放射性“三废”管理体系;以质量为核心的环境监测评价体系;以ISO14001标准为基础的持续改进体系。经过多年的实践和改进,这套环境管理体系日趋成熟,为全面提升广东核电合营有限公司的环境  相似文献   
150.
贵州喀斯特地区土壤中微生物量碳的季节性变化   总被引:12,自引:0,他引:12  
对于贵州喀斯特地区土壤中微生物量碳,气温,土壤水份和土壤可溶性有机碳的为时一年的研究结果表明,土壤微生物量碳与气温和土可溶性有机碳之间均存在负的相关性。夏季频繁的土壤干湿循环加快了土壤微生物量碳转换成可溶性有机碳的速度,并不断地消耗微生物量碳,从而使微生物量碳含量降低,而可溶性有机碳含量增加。冬季的情况则与此相反。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号