首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   36篇
  国内免费   79篇
安全科学   34篇
废物处理   5篇
环保管理   34篇
综合类   207篇
基础理论   36篇
污染及防治   30篇
评价与监测   7篇
社会与环境   8篇
灾害及防治   11篇
  2024年   7篇
  2023年   15篇
  2022年   23篇
  2021年   11篇
  2020年   31篇
  2019年   22篇
  2018年   20篇
  2017年   11篇
  2016年   15篇
  2015年   23篇
  2014年   23篇
  2013年   19篇
  2012年   15篇
  2011年   24篇
  2010年   15篇
  2009年   17篇
  2008年   22篇
  2007年   15篇
  2006年   11篇
  2005年   9篇
  2004年   10篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
排序方式: 共有372条查询结果,搜索用时 31 毫秒
81.
82.
苏莹莹  李然  林芝 《四川环境》2006,25(4):91-93,108
通过采用不同方法对污染带长度进行分析计算,结果表明,在污染带长度的计算中,必须考虑边壁反射作用,而一般情况下,考虑2次边壁反射的计算结果即可以满足精度要求。本文通过对污染带长度应用问题的讨论认为:在实际工作中,不仅需要研究污染带长度,还需要对污染区域内污染物的实际浓度给予关注,两者结合,才能对污染范围和程度有更准确和全面的认识。  相似文献   
83.
PM10是衡量大气环境质量好坏的重要指标之一;多环芳烃(PAHs)是具有强烈致癌性的有机污染物,大多吸附在粒径小于10 μm颗粒物上.利用长期定位实验采集了南京市两典型功能区--大厂地区和山西路的PM10样品,对其PAHs质量浓度进行了分析测定,研究了不同功能区PM10中PAHs的时空污染特性.研究结果表明:南京市PM10污染比较严重,其质量浓度变化范围在0.1157 mg·m-3~0.3913 mg·m-3之间;经分析PM10中16种优控多环芳烃(PAHs)发现,全年大厂地区的PAHs的质量浓度与山西路PAHs的质量浓度没有明显的高低之分;PAHs总质量浓度的空间变化不明显,时间变化也没有规律性;比较PM10与PAHs的月平均质量浓度变化趋势,两者之间的变化没有相关性,各自的质量浓度变化也没有规律性,分析其结果可能是由于PAHs的不稳定性造成的.  相似文献   
84.
近年来大气中CO2体积分数急剧上升,对植物的光合作用、呼吸作用、水分利用等产生重要的影响.文章利用开顶式气室(OTC)研究了大气CO2体积分数升高条件下玉米(Zea mays L.)叶片抗氧化能力的变化.结果表明,整个生长季内,与对照相比,在高体积分数CO2(550×10-6)条件下,玉米叶片的相对电导率和MDA含量下降,说明膜脂过氧化程度有所降低;O2-·产生速率和H2O2含量与对照相比呈下降趋势并在灌浆期呈显著性差异(P<0.05),但是随着熏蒸时间的延长,高体积分数CO2处理的植株O2-·产生速率和H2O2含量都逐渐降低,这说明高体积分数CO2下活性氧产生减少;SOD、POD、CAT的活性与对照相比明显升高并达到显著(P<0.05)或极显著水平(P<0.01);百粒质量、穗粒数和穗粒质量均高于对照,说明CO2体积分数升高有利于提高玉米的抗氧化能力,促进植物生长.  相似文献   
85.
为了解遮光控藻技术的机理,研究了遮光围隔中铜绿微囊藻的时空分布特征.2006年10月末在人工围隔内诱发铜绿微囊藻水华后开展遮光试验,遮光前水中叶绿素a浓度、DO、pH值分别为107.1μg/L、9.7mg/L、9.1,遮光7d后显著下降为44.5μg/L、2.6mg/L、8.0.在群体形态方面,遮光前约71.4%群体直径>50μm,而遮光后几乎都在50μm以下,证实了遮光法对铜绿微囊藻水华的控制效果.对水体不同深度处的叶绿素a浓度的监测结果表明,遮光后5d内铜绿微囊藻群体出现上浮聚集现象,分析认为该现象与藻类自身的浮力调控机制有关.  相似文献   
86.
采用一次培养实验方法,研究了Pb(Ⅱ)对赤潮异弯藻(Heterosigma akashiwo Hada)、亚心形扁藻(Platymoaas subcordiforus)、中肋骨条藻[Skeletonema costatuma(Greville)Cleve]和旋链角毛藻(Chaetoceros curvisetus)、海洋原甲藻(Prorocentrum micans)和裸甲藻(Gymnodinium sp.)等6种海洋浮游植物粒径的影响。应用统计软件(Origin 7.0)拟合出6种浮游植物的中值粒径,作出粒径随时间、Pb(Ⅱ)浓度变化的分布图,描述了6种浮游植物在不同的Pb(Ⅱ)浓度下,生长周期内粒径的变化。  相似文献   
87.
选取某石油类污染地区为对象,研究地下水阴阳离子浓度不同时凹凸棒石净化石油烃污染地下水的效率,为下一步的PRB修复工作做准备。结论表明:凹凸棒石经过热处理改性后,可提高去除污染地下水中石油烃的能力,凹凸棒石的最佳热处理温度为130℃。除Na+对凹凸棒石净化石油烃去除率在低浓度有抑制作用外,其他离子均在低浓度时对去除率有促进作用,在高浓度时对去除率有抑制作用。  相似文献   
88.
刘转年  滕莹莹  范一丹 《环境工程》2021,39(11):143-148
吸附和电解是2种去除水中有机物的有效方法,为发挥吸附和电解对有机物的协同作用,将具有优良吸附导电性能的还原氧化石墨烯(RGO)与活性炭(AC)复合得到复合材料并将其黏附在Ti极片上,得到RGO/AC/Ti复合电极用于电解水中的甲基橙。利用SEM、FT-IR、BET、XRD、C-V、EIS等对复合材料及电极进行表征,考察了Ti、RGO/Ti和RGO/AC/Ti对甲基橙的电化学性能。结果表明:与RGO相比,RGO/AC的比表面积由318.1 m2/g增加到405.1 m2/g。相对于RGO/Ti,RGO/AC/Ti电极比电容值略有下降,但电容保持率提升。在电解质浓度为0.15 mol/L,极距为15 mm,电流为100 mA,pH为6时,Ti、RGO/Ti和RGO/AC/Ti电极对甲基橙的去除率分别达到48.1%、79.5%和88.8%,去除效果较好。  相似文献   
89.
基于实验室模拟燃烧和稀释通道采样系统,采用荷电低压撞击采样器采集了6种典型木柴燃烧排放的14级粒径段颗粒物.采用离子色谱分析了8种水溶性离子,获得水溶性离子的分粒径排放因子和排放特征.结果表明,Ca2+的排放因子呈双峰分布,在0.25~0.38和2.5~3.6μm粒径段出现峰值,分别为0.14和0.16mg/kg.其余离子的排放因子为单峰分布.NH4+、NO3-和SO42-的排放因子在0.25~0.38μm粒径段出现峰值,分别为0.41、0.58和0.84mg/kg.K+和Cl-的排放因子在0.15~0.25μm内出现峰值,分别为0.89和0.99mg/kg.木柴燃烧排放总水溶性离子的质量中值粒径为(0.30±0.07)μm,各离子的质量中值粒径范围为0.24~0.44μm.PM0.094、PM0.94、PM2.5和PM10中水溶性离子的排放因子变化范围分别为1.04~9.33、5.00~48.87、5.46~52.00和6.14~53.68mg/kg.木柴燃烧排放颗粒物中K+/Cl-、K+/NO3-、K+/SO42-和SO42-/NO3-比值随粒径变化而变化,其排放初始值在应用于源解析和生物质燃烧排放气溶胶传输老化研究时需引起关注.木柴燃烧排放PM10中的阴阳离子当量比值为0.80±0.11,颗粒物的酸度随颗粒物粒径而改变,亚微米颗粒物和细颗粒物的酸度高于超细颗粒物和粗颗粒物的酸度.本研究对构建生物质燃烧排放分粒径水溶性离子清单,更新和改进相关气候和空气质量模型的参数设置,识别烟气传输过程中的老化具有重要意义.  相似文献   
90.
中韩两国乃至整个东北亚都面临空气质量改善的紧迫需求和挑战,大气污染防治领域的交流合作成为国际社会环境合作的热点议题. 为共同应对雾霾挑战,2019年以来,中韩两国通过密切交流合作,探索形成了一套以合作机制创新、共同平台建设、旗舰项目打造、互助联合研究等为主体的务实高效的合作范式,打破了双方在组织、地域、学科、信息、技术等方面的“五大壁垒”,实现了政策、技术、数据、信息、成果等共享,助力了两国空气质量改善,也推动了东北亚区域空气质量整体改善,为推动构建人类命运共同体在区域层面的实践提供了生态环境领域的宝贵经验. 本文在分析阐释2015—2019年中韩两国空气质量改善的紧迫需求和挑战的基础上,全面总结2019—2021年中韩大气领域合作进展和成果,以及合作过程中形成的具有全局性、前瞻性和可复制性的合作范式,阐明双方在提升两国大气污染治理能力、助力空气质量改善、切实回应社会关注问题实现增信释疑、支撑多边环境外交等方面的合作成效,并基于东北亚大气环境治理需求和面临的新形势,提出加强东北亚区域合作的展望和建议,建议未来两国应持续打造和推广中韩大气领域双边合作范式,积极推动建立“中韩+”环境合作新格局,为东北亚乃至全球大气环境治理贡献中韩智慧和方案.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号