首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  国内免费   35篇
安全科学   3篇
废物处理   1篇
综合类   73篇
基础理论   21篇
污染及防治   4篇
评价与监测   3篇
灾害及防治   1篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  1997年   1篇
  1996年   3篇
  1995年   6篇
  1994年   8篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   7篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
11.
典型灌区稻田多氯联苯残留特征及生态风险评估   总被引:2,自引:0,他引:2  
刘娟  赵振华  江莹  刘月利 《生态环境》2010,19(8):1979-1982
以南方典型小灌区的两块稻田为试验小区,采用GC-ECD对其田间水体和土壤中EPA优控14种多氯联苯(PCBs)进行了检测和定量分析。结果表明,14种PCBs同系物有不同程度检出,优势残留物主要以3氯和5氯取代PCBs为主,水和土壤占PCBs总量的88.24%、90.13%。水中∑PCBs质量浓度为24.09~310.34ng·L^-1,其中地表水均值为245.84ng·L^-1,地下水均值为96.46ng·L^-1;土壤中∑PCBs质量分数为10.01~54.63ng·g^-1,均值为33.92ng·g^-1。稻田地表水中的PCBs质量浓度远高于地下水,垂向迁移明显但速度较慢;稻田地表及地下水中PCBs质量浓度有随时间衰减的趋势,可能与水稻的生育周期有关;淹灌处理稻田PCBs质量分数高于节水灌溉。研究区毒性当量TEQ在2.65×10^-2~7.54×10^-2pg·g^-1之间,生态风险处于中等水平。地表及地下水均遭到污染,再加上PCBs具有生态累积效应,危害不容忽视。  相似文献   
12.
通过计算43种有机磷农药的各种结构参数,运用多元线性回归分析方法比较了适用于有机磷农药色谱保留值的定量关系表达式,建立了有机磷农药结构参数对色谱保留值的QSPR模型.模型分析表明:磷酸酯与硫逐磷酸酯两类有机磷农药的模型非交叉验证相关系数R2分别为0.991和0.998,标准误差SE分别为0.0539和0.2874,交叉验证相关系数Q2分别为0.976和0.990,标准偏差Scv分别为0.086和0.610.在已知磷酸酯与硫逐磷酸酯两类有机磷农药结构参数的情况下,此模型可有助于有机磷农药的色谱分析.  相似文献   
13.
微生物对土壤环境中重金属活性的影响   总被引:50,自引:0,他引:50  
各种工农业生产和家庭消费引起的重金属在环境中的释放 ,以及由此带来的环境胁迫和破坏 ,呈加剧的趋势 .在全球范围内 ,人类活动引起的Pb ,Cd,V与Zn的释放量分别是自然情况下的 12 ,5 ,3和 3倍 .Sb ,As ,Cr,Cu ,Hg,Ni,Se等的人为释放量或超过自然释放量 ,或与自然释放量持平[1] .土壤是重金属离子的源和汇 ,土壤中的重金属离子可以多种形态存在 ,如可溶态、交换态以及与不同土壤固相组分如碳酸盐、铁锰氧化物、有机质、残渣物质结合的形态[2 ] .重金属在土壤中的活性和生物有效性受到多种因素的制约 ,特别是各种有机胶…  相似文献   
14.
焦炉排放大气颗粒物中正构烷烃的初步研究   总被引:2,自引:0,他引:2  
本文报告焦炉排气大气中可吸入尘(>15μm)上正构烷烃的排放量,分析了不同粒径颗粒物上21种正构烷烃的浓度,表明这些化合物的量随着烷烃碳数的增加呈正态分布;每种烷烃的量和颗粒物的空气动力学直径的对数呈正态分布关系。  相似文献   
15.
焦炉大气可吸入尘中的四种氮杂芳烃——吖啶、(口菲)啶、苯并(f)喹啉和苯并(h)喹啉经GC/MS和标样确证后用HPLC进行了定量分析,分别给出它们在六个不同粒径范围的颗粒物上的浓度。结果表明85%以上的氮杂芳烃都集中在3μm以下的颗粒上,探讨了这些化合物依赖粒径的分布关系。  相似文献   
16.
溶解性有机质(DOM)的荧光物质是一种较好的示踪剂,用于鉴别DOM的来源及其在水文系统中的地球化学行为.该物质在岩溶水系统中的研究较少,并且要作为潜在示踪剂,系统中有很多因素影响其光谱信息.实验选取一典型岩溶流域,通过三维荧光光谱技术(EEMs)和平行因子分析(PARAFAC),结合水化学数据分析,揭示DOM荧光物质在不同岩溶含水空间的组成和转化关系,刻画流域尺度DOM的来源,探讨水化学因素对DOM荧光物质转移的影响机制.结果表明,流域外源地表水和岩溶地表水中的DOM以类蛋白色氨酸为主,浅层岩溶水和深层岩溶水以类蛋白色氨酸和酪氨酸为主.荧光指数(FI)、生物指数(BIX)和腐殖化指数(HIX)的综合分析认为,浅层岩溶水和深层岩溶水的DOM主要来自于内源微生物分解,岩溶地表水和外源地表水的DOM既有陆源输入又有内源微生物分解,且内源贡献占有较大比例.受岩溶水化学参数的影响,3种荧光物质具有明显的分异特征:类酪氨酸物质对Ca~(2+)和HCO_3~-具有较强的适应性,在岩溶水中存在的比例比较大.类色氨酸物质则相反,类富里酸物质则与TDS、浊度、Cl~-、SO_4~(2-)等呈现极显著正相关关系.流域上游浅层岩溶水中的DOM主要来自内源.出露地表以后,其有机质同时来自内源和外源输入.在流域下游渗入深层岩溶地下水以后,DOM逐渐向低芳香烃有机质化合物转化,大分子DOM逐渐减少,荧光强度减弱.主成分分析(PCA)提取出3个主成分,分别为反映岩溶水渗滤、转化、水流条件的水体矿化指标,反映土壤淋滤和自然渗滤关系的TOC、NO_3~-及类蛋白质指标,以及反映岩溶水系统水化学、生物化学过程的Ca~(2+)、HCO_3~-、荧光指数和类富里酸指标.此外研究还认为,总荧光强度,类富里酸物质和类蛋白物质可以分别作为岩溶水快速渗流、转化及岩溶含水层脆弱性的示踪剂.研究结果有助于认识岩溶地下水DOM的生物地球化学循环,进行岩溶系统有机污染控制,为岩溶水系统中物质的地球化学过程表征提供一种新的工具.  相似文献   
17.
在高浓度多环芳烃环境中暴露后人尿中1-羟基芘的变化   总被引:3,自引:0,他引:3  
观察了人在高浓度多环芳烃环境中暴露后尿中1-羟基芘的排出量,并测定了空气中的多环芳烃浓度。结果表明,人由空气中吸入芘后,其代谢产物1-羟基芘大部分在24小时内由尿中排出,按克分子计算,由尿中排出的1-羟基芘为由空气吸入芘的7—17%。  相似文献   
18.
表面活性剂增效洗脱修复技术被广泛应用于土壤修复. 本文选取11种非离子型和3种离子型表面活性剂对多环芳烃(PAHs,菲、芘、苯并[a]芘)污染土壤进行洗脱研究,筛选出洗脱效果较好的表面活性剂,并深入探索表面活性剂浓度、洗脱时间、固液比等因素以及表面活性剂的复配对土壤PAHs增效洗脱的影响,旨在比选出一种高效洗脱土壤PAHs的表面活性剂并对其洗脱方法进行优化. 结果表明:①表面活性剂浓度为10 g/L、固液比为1∶20条件下,聚氧乙烯醚-10(NSF10)的去除率最高,达到78%;其次为曲拉通X-100(TX-100)和吐温80(TW-80),去除率分别为76.7%和73.4%. ②随着表面活性剂添加浓度的增加,土壤PAHs的去除率增大,当表面活性剂浓度超过5 g/L时,PAHs去除率的增幅减缓,可见,5 g/L是相对有效且经济的表面活性剂添加浓度. ③当洗脱时间为16 h时,NSF10对PAHs的洗脱达到平衡,继续延长洗脱时间,洗脱效果并未增强. ④增加NSF10用量有利于洗脱,固液比1∶40是最优固液比,此时PAHs的去除率已达到固液比为1∶100时的85.2%. ⑤非离子表面活性剂NSF10、TX-100、TW-80与阴离子表面活性剂SDS分别以体积比9∶1进行复配时均取得了优于单一活性剂的洗脱效果,NSF10与SDS体积比为7∶3时,增溶洗脱效果最为明显,比单一表面活性剂提高了18.2%. 研究显示,NSF10是一种高效的PAHs洗脱剂,添加浓度为5 g/L、洗脱时间为16 h、固液比为1∶40是其最优参数选择,其与SDS以体积比7∶3进行复配可进一步提升增溶洗脱效果.   相似文献   
19.
<正> 稀土元素分布的四重效应(tetrad effect),是指溶液体系中的稀土元素在两相间的分配系数为每四个稀土元素成一组,如(La、Ce、Pr、Nd)、(Pm、Sm、Eu、Gd)、(Gd、Tb、Dy、Ho)、(Er、Tm、Yb、Lu)。它们组成相似的凹形或凸形曲线(图1)。这种分布型式是在实验室中发现的,图1表示,稀土元素在水溶液相和有机相间的分配系数K=(Ln)_(水)/(Ln)_(有机)服从四重分布效应。图1a所示水溶液相为1.1F的LiBr和0.5F的HBr,有  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号