首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   7篇
  国内免费   19篇
安全科学   4篇
综合类   27篇
污染及防治   14篇
  2022年   7篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
考察了长期低溶解氧(DO)条件下推流式活性污泥系统碳和氮去除的效果,并从微生物群落结构及动力学特征方面进行了机理分析. 结果表明, 将DO浓度从2.0mg/L降低至0.3mg/L,系统仍可有效地去除污水中的碳和氮,但当DO降低至0.3mg/L时, 系统的脱氮性能波动较大. 随着DO浓度的降低, 系统中细菌的总体群落结构发生改变, 但功能菌群仍为Proteobacteria,约占65%.Nitrosomonas oligotropha、Nitrobacter winogradskyi spp.和Group1Nitrospira等是低溶解氧条件下的主要硝化细菌. qPCR结果显示DO从2.0mg/L降至0.5mg/L时硝化细菌(主要是Nitrospira)得到富集, 保证了低DO条件下的完全硝化. 硝化反应动力学分析也表明, 在一定范围内降低DO可以延迟细菌衰亡以维持活性污泥系统中硝化细菌的生物量. 本研究可为污水处理厂降低DO实现节能运行提供理论支持.  相似文献   
42.
沸石粉能够通过对氨氮的物理吸附作用,降低堆肥过程中的氮素损失;硝化抑制剂(如3,4-二甲基吡唑磷酸盐,DMPP)能够抑制氨氧化细菌的活性,阻止硝化反应中铵态氮向硝态氮的转化,从而从源头减少反硝化作用而造成的氧化亚氮温室气体的排放.目前国内针对沸石粉和硝化抑制剂(DMPP)作为添加剂对污泥堆肥过程中的保氮作用研究较少,其是否能够实现污泥堆肥过程中温室气体减排也值得深入探讨.本研究以脱水污泥作为研究对象,以蘑菇渣为辅料,设置空白对照、沸石粉和硝化抑制剂(DMPP)添加组,进行21 d的堆肥试验,研究沸石粉和DMPP的添加对污泥堆肥过程的氮素损失和温室气体排放的影响.结果表明,1%的沸石粉添加(湿重)不仅可以减少5%的温室气体排放,而且能够减少2.9%的总氮损失;而DMPP的添加虽然可以减少N_2O的排放,但会显著增加CH_4及NH_3的排放,从而导致温室气体排放和氮素损失的增加.  相似文献   
43.
随着我国污水处理厂污泥产量的急剧增加,污泥处理处置的效率亟待提高。传质是影响污泥处理效果最重要的因素之一,而污泥的流变特性对传质效果有决定性的作用,因此污泥的流变特性是污泥处理处置单元设计和运行的重要参数。通过分析不同的流体类型,明确了作为非牛顿流体的污泥既是假塑性流体又是触变性流体。在此基础上,对三种常用的非牛顿流体流变模型,即Ostwald de Vaele模型、Herschel-Bulkley模型和Bingham模型进行比较分析,并系统阐述了污泥流变特性及其变化规律性的国内外研究进展。  相似文献   
44.
曝气环节是活性污泥法的重要单元,也是能耗最大的单元,为污染物的好氧生化处理提供所必需的氧气。曝气控制的研究对于出水水质的提高和运营成本的节省具有重要意义。随着污水处理技术的发展,曝气控制也越来越精细化。其中,传统曝气控制系统以反馈微调为核心,新型曝气控制系统包括以模型计算为核心的精确曝气控制和以规则推理为核心的智能曝气控制。针对上述控制系统的运作规律、实现方式进行综述;对现有的曝气控制系统进行评价,从控制参数、控制方式、硬件和软件等方面提出优化建议,并对曝气控制系统的前景进行展望。  相似文献   
45.
为了考察不同Pb2+浓度(3、5、10 mg/L)下,SBR活性污泥系统对模拟含铅废水中Pb2+的去除效果,分析了活性污泥去除Pb2+的影响因素,并采用动力学模型、红外光谱及X射线能谱对活性污泥吸附Pb2+的机理进行了研究. 结果表明:①Pb2+浓度分别为3和5 mg/L时,SBR活性污泥系统对模拟含铅废水中Pb2+的去除率均在98%以上,该系统中活性污泥的Pb2+吸附量为6.2 mg/g;Pb2+浓度为10 mg/L时,SBR活性污泥系统运行后期Pb2+的去除率有所下降,这与该系统Pb2+累积量(351.6 mg)过高有关. ②在Pb2+长期作用下,SBR活性污泥系统各试验阶段的MLSS均会经历先下降再恢复的过程,且该系统中生物多样性和物种丰富度明显下降,可逐渐筛选出对Pb2+耐受性较强的微生物. ③SBR活性污泥系统去除Pb2+的适宜pH范围为6~7,最佳温度为25 ℃. ④活性污泥对Pb2+的吸附机理主要表现为化学吸附作用,包含表面有机络合、离子交换等过程. 研究显示,SBR活性污泥系统更适用于处理低浓度(3、5 mg/L)的含Pb2+废水.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号