首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41100篇
  免费   475篇
  国内免费   357篇
安全科学   1351篇
废物处理   1865篇
环保管理   5653篇
综合类   6713篇
基础理论   10654篇
环境理论   18篇
污染及防治   10033篇
评价与监测   2767篇
社会与环境   2585篇
灾害及防治   293篇
  2022年   334篇
  2021年   394篇
  2020年   271篇
  2019年   336篇
  2018年   563篇
  2017年   624篇
  2016年   948篇
  2015年   720篇
  2014年   1071篇
  2013年   3431篇
  2012年   1336篇
  2011年   1778篇
  2010年   1426篇
  2009年   1524篇
  2008年   1824篇
  2007年   1792篇
  2006年   1628篇
  2005年   1405篇
  2004年   1364篇
  2003年   1313篇
  2002年   1211篇
  2001年   1461篇
  2000年   1061篇
  1999年   660篇
  1998年   516篇
  1997年   508篇
  1996年   553篇
  1995年   629篇
  1994年   543篇
  1993年   503篇
  1992年   536篇
  1991年   507篇
  1990年   485篇
  1989年   454篇
  1988年   414篇
  1987年   348篇
  1986年   359篇
  1985年   379篇
  1984年   393篇
  1983年   392篇
  1982年   398篇
  1981年   354篇
  1980年   288篇
  1979年   311篇
  1978年   249篇
  1977年   230篇
  1975年   200篇
  1974年   214篇
  1973年   239篇
  1972年   226篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
931.
A hydrodynamic–oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another. Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge. Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.  相似文献   
932.
The Water Poverty Index: Development and application at the community scale   总被引:17,自引:1,他引:17  
The article details the development and uses of the water poverty index (WPI). The index was developed as a holistic tool to measure water stress at the household and community levels, designed to aid national decision makers, at community and central government level, as well as donor agencies, to determine priority needs for interventions in the water sector. The index combines into a single number a cluster of data directly and indirectly relevant to water stress. Subcomponents of the index include measures of: access to water; water quantity, quality and variability; water uses (domestic, food, productive purposes); capacity for water management; and environmental aspects.
The WPI methodology was developed through pilot projects in South Africa, Tanzania and Sri Lanka and involved intensive participation and consultation with all stakeholders, including water users, politicians, water sector professionals, aid agency personnel and others. The article discusses approaches for the further implementation of the water poverty index, including the possibilities of acquiring the necessary data through existing national surveys or by establishing interdisciplinary water modules in school curricula. The article argues that the WPI fills the need for a simple, open and transparent tool, one that will appeal to politicians and decision makers, and at the same time can empower poor people to participate in the better targeting of water sector interventions and development budgets in general.  相似文献   
933.
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   
934.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   
935.
936.
Urban atmospheric environment contains many trace organic pollutants that are related to the incomplete fuel combustion in domestic heating, industrial plants and automobile traffic. Removal of these pollutants from the atmosphere takes place through wet and dry deposition as well as chemical transformations. In this study, concentrations of polycyclic aromatic hydrocarbons (PAHs) in wet deposition samples were determined at an urban site of Turkey. Wet and dry deposition samples were collected using Andersen Rain Sampler. The sampler was modified accordingly for the collection of organic pollutants. Collected samples were preconcentrated by using solid phase extraction (SPE) disks and consecutively analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Among the 13 compounds quantified in this study, anthracene, fluoranthene, and pyrene were found more frequently and at elevated concentrations (202, 271 and 260 ng L-1 mean concentrations, respectively).Concentrations of PAHs were found to be high in winter period.  相似文献   
937.
Laboratory column experiments run for up to 13 days compared air sparging of groundwater contaminated by dissolved petroleum hydrocarbons in sterile and non-sterile aquifer sediments as well as uncontaminated sediments and groundwater. Loss of dissolved BTEX compounds in the contaminated columns was very rapid, occurring through volatilisation. The majority of the dissolved total organic carbon (TOC) persisted for much longer periods however. A direct comparison between losses from sterile and non-sterile columns suggested a negligible contribution of biodegradation to the removal of TOC. This was difficult to confirm through examination of O2 utilisation because oxidation of a small amount of reduced sulphur in the aquifer materials was the dominant sink for O2. Despite this, it was possible to conclude that less than 22% of the removal of TOC was through biodegradation during the first three days of air sparging.  相似文献   
938.
939.
ABSTRACT: The Ecosystem Management (EM) process belongs to the category of Multi‐Criteria Decision Making (MCDM) problems. It requires appropriate decision support systems (DSS) where “all interested people” would be involved in the decision making process. Environmental values critical to EM, such as the biological diversity, health, productivity and sustainability, have to be studied, and play an important role in modeling the ecosystem functions; human values and preferences also influence decision making. Public participation in decision and policy making is one of the elements that differentiate EM from the traditional methods of management. Here, a methodology is presented on how to quantify human preferences in EM decision making. The case study of the National Park of River Nestos Delta and Lakes Vistonida and Ismarida in Greece, presented as an application of this methodology, shows that the direct involvement of the public, the quantification of its preferences and the decision maker's attitude provide a strong tool to the EM decision making process. Public preferences have been given certain weights and three MCDM methods, namely, the Expected Utility Method, Compromise Programming and the Analytic Hierarchy Process, have been used to select alternative management solutions that lead to the best configuration of the ecosystem and are also socially acceptable.  相似文献   
940.
ABSTRACT: Ground water contamination by excess nitrate leaching in row‐crop fields is an important issue in intensive agricultural areas of the United States and abroad. Giant cane and forest riparian buffer zones were monitored to determine each cover type's ability to reduce ground water nitrate concentrations. Ground water was sampled at varying distances from the field edge to determine an effective width for maximum nitrate attenuation. Ground water samples were analyzed for nitrate concentrations as well as chloride concentrations, which were used as a conservative ion to assess dilution or concentration effects within the riparian zone. Significant nitrate reductions occurred in both the cane and the forest riparian buffer zones within the first 3.3 m, a relatively narrow width. In this first 3.3 m, the cane and forest buffer reduced ground water nitrate levels by 90 percent and 61 percent, respectively. Approximately 40 percent of the observed 99 percent nitrate reduction over the 10 m cane buffer could be attributed to dilution by upwelling ground water. Neither ground water dilution nor concentration was observed in the forest buffer. The ground water nitrate attenuation capabilities of the cane and forest riparian zones were not statistically different. During the spring, both plant assimilation and denitrification were probably important nitrate loss mechanisms, while in the summer nitrate was more likely lost via denitrification since the water table dropped below the rooting zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号