首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29732篇
  免费   335篇
  国内免费   247篇
安全科学   999篇
废物处理   1453篇
环保管理   3941篇
综合类   4469篇
基础理论   7748篇
环境理论   8篇
污染及防治   7348篇
评价与监测   2125篇
社会与环境   2043篇
灾害及防治   180篇
  2023年   140篇
  2022年   261篇
  2021年   319篇
  2020年   195篇
  2019年   243篇
  2018年   435篇
  2017年   460篇
  2016年   719篇
  2015年   531篇
  2014年   854篇
  2013年   2463篇
  2012年   1015篇
  2011年   1349篇
  2010年   1102篇
  2009年   1144篇
  2008年   1410篇
  2007年   1329篇
  2006年   1207篇
  2005年   1079篇
  2004年   1037篇
  2003年   990篇
  2002年   933篇
  2001年   1091篇
  2000年   768篇
  1999年   482篇
  1998年   363篇
  1997年   383篇
  1996年   397篇
  1995年   465篇
  1994年   394篇
  1993年   343篇
  1992年   376篇
  1991年   355篇
  1990年   326篇
  1989年   322篇
  1988年   295篇
  1987年   241篇
  1986年   247篇
  1985年   247篇
  1984年   267篇
  1983年   254篇
  1982年   268篇
  1981年   221篇
  1980年   165篇
  1979年   181篇
  1978年   162篇
  1977年   133篇
  1975年   137篇
  1973年   167篇
  1972年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown.  相似文献   
942.
Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.  相似文献   
943.
The relative grazing impact of Noctiluca scintillans (hereafter referred only Noctiluca) and copepods (Acrocalanus gracilis, Paracalanus parvus, Acartia danae and Oithona similis) on the phytoplankton community in an upwelling–mudbank environment along the southwest coast India is presented here. This study was carried out during the Pre-Southwest Monsoon (April–May) to the Late Southwest Monsoon (August) period in 2014. During the sampling period, large hydrographical transformation was evident in the study area (off Alappuzha, Southwest coast of India); warmer Pre-Southwest Monsoon water column condition got transformed into cooler and nitrate-rich hypoxic waters during the Southwest Monsoon (June–August) due to intense coastal upwelling. Copepods were present in the study area throughout the sampling period with a noticeable increase in their abundance during the Southwest Monsoon. On the other hand, the first appearance of Noctiluca in the sampling location was during the Early Southwest Monsoon (mid-June) and thereafter their abundance increased towards the Peak Southwest Monsoon. The grazing experiments carried out as per the food removal method showed noticeable differences in the feeding preferences of Noctiluca and copepods, especially on the different size fractions of phytoplankton. Noctiluca showed the highest positive electivity for the phytoplankton micro-fraction (av. 0.49 ± 0.04), followed by nano-fraction (av. 0.17 ± 0.04) and a negative electivity for the pico-fraction (av. ?0.66 ± 0.06). In total ingestion of Noctiluca, micro-fraction contribution (83.7%) was significantly higher compared to the nano- (15.7%) and pico-fractions (0.58%). On the other hand, copepods showed the highest positive electivity for the phytoplankton nano-fraction (av. 0.38 ± 0.04) followed by micro- (av. -0.17 ± 0.05) and pico-fractions (av. ?0.35 ± 0.05). Similarly, in total ingestion of copepods, nano-fraction (69.7%) was the highest followed by micro- (28.9%) and pico-fractions (1.37%). The grazing pressure of Noctiluca on the total phytoplankton was found to be 27.7% of the standing stock and 45.6% of the production, whereas in the case of copepods, it was 9.95% of the standing stock and 16.6% of the production. The study showed that the grazing pressure of Noctiluca on the total phytoplankton as well as larger phytoplankton fraction was 2.8- and 8-folds higher than that of the copepods. This suggests the leading role of Noctiluca as an effective grazer of larger phytoplankton along the southwest west coast of India, especially during the Peak/Late Southwest Monsoon.  相似文献   
944.
El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the “master morphological trait” with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015–2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015–2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.  相似文献   
945.
Hyperspectral data can provide prediction of physical and chemical vegetation properties, but data handling, analysis, and interpretation still limit their use. In this study, different methods for selecting variables were compared for the analysis of on-the-ground hyperspectral signatures of wheat grown under a wide range of nitrogen supplies. Spectral signatures were recorded at the end of stem elongation, booting, and heading stages in 100 georeferenced locations, using a 512-channel portable spectroradiometer operating in the 325–1075-nm range. The following procedures were compared: (i) a heuristic combined approach including lambda-lambda R2 (LL R2) model, principal component analysis (PCA), and stepwise discriminant analysis (SDA); (ii) variable importance for projection (VIP) statistics derived from partial least square (PLS) regression (PLS-VIP); and (iii) multiple linear regression (MLR) analysis through maximum R-square improvement (MAXR) and stepwise algorithms. The discriminating capability of selected wavelengths was evaluated by canonical discriminant analysis. Leaf-nitrogen concentration was quantified on samples collected at the same locations and dates and used as response variable in regressive methods. The different methods resulted in differences in the number and position of the selected wavebands. Bands extracted through regressive methods were mostly related to response variable, as shown by the importance of the visible region for PLS and stepwise. Band selection techniques can be extremely useful not only to improve the power of predictive models but also for data interpretation or sensor design.  相似文献   
946.
947.
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号