首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   2篇
  国内免费   4篇
安全科学   10篇
废物处理   16篇
环保管理   16篇
综合类   18篇
基础理论   28篇
污染及防治   51篇
评价与监测   16篇
社会与环境   7篇
灾害及防治   4篇
  2023年   4篇
  2022年   17篇
  2021年   14篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   14篇
  2016年   14篇
  2015年   3篇
  2014年   4篇
  2013年   18篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
61.
Sulfur dioxide (SO2) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO2 (3900 μg m?3) were non-supplemented or supplemented with Fe (3 g L?1) as foliar spray. Plants were exposed to SO2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO2-exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO2 in comparison with those non-fumigated with SO2. Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO2 on cell wall composition. In contrast to SO2, application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO2 in plants supplied with Fe compared with those unsupplied with Fe.  相似文献   
62.
Environmental Science and Pollution Research - Different methods, including the use of nanoscale zero-valent iron (NZVI), have been used to treat arsenic (As)-contaminated environments, with much...  相似文献   
63.
The monitoring of surface water quality of rivers is crucial to protect aquatic life and receiving water bodies of economic importance. The aim of the current study was to examine selected physicochemical parameters of River Tajan due to its ecological importance in Iran. Water samples from nine points covering the entire Tajan River and Caspian Sea estuary were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), carbonates, chlorides and selected heavy metals including zinc, cadmium, lead and chromium. The pH and levels of EC, TDS, chlorides, carbonates and all metals were within the USEPA reference guidelines for surface water quality standards. Although these water quality parameters are considered safe, continuous monitoring and assessment is recommended in order to protect the coastal receiving waters of Caspian Sea which serves as a tourist attraction in northern Iran.  相似文献   
64.
The study deals with the design and optimization of external and internal geometry of micro-wind turbines blades. A specified objective function which consists of the power coefficient and the starting time was defined and the genetic algorithm optimization technique in conjunction with the blade-element momentum theory was adopted to find the geometry of the blades including the distributions of the chord, the twist angle and also the shell thickness. Moreover, the allowable stress of the blades was considered as a constraint to the objective function. Results show that a reasonable compromise is achievable such that the starting time of the blades reduces noticeably in return for a small drop in the power coefficient. The significant improvement of the hollow blades over the solid ones indicates that the power coefficient and the starting performance could be improved through the appropriate distributions of the considered decision variables, i.e. the chord, the twist angle and also the shell thickness.  相似文献   
65.
Poly(acrylamide-co-maleic acid)/montmorillonite nanocomposites, were synthesized via in situ polymerization with different maleic acid and MMT content. The capability of the hydrogel for adsorption of crystal violet (CV) was investigated in aqueous solutions at different pH values and temperatures. The pseudo-second-order kinetics model could fit successfully the adsorption kinetic data. The effects of maleic acid to acrylamide molar ratio (MAR), weight percent of MMT (MMT%), the pH of medium and the solution temperature (T) on the CV adsorption capacity (q e ) of adsorbents were studied by Taguchi experimental design approach. The results indicated that increasing the MMT% leads to a greater q e . The q e value of adsorbents increased also with increasing both MAR and pH, while reduced when the temperature of medium increased. The relatively optimum conditions to achieve a maximum CV adsorption capacity for P(AAm/MA)/MMT adsorbents were found as: 0.06 for MAR and 5 % of MMT%, medium pH = 7 and T = 20 °C.  相似文献   
66.
67.
68.
Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition.  相似文献   
69.
Abstract

On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.–3 a.m.) with a mean of 2 µg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.–9 a.m.) with a mean of 11.9 µg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 µg/m3 (SD = 3.1, n = 7) to 22.3 µg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest >2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.  相似文献   
70.
Study of trace elements in wet atmospheric precipitation in Tehran,Iran   总被引:1,自引:0,他引:1  
In this study, measurements of the trace metals Zn, Cd, Cr, Ni, Pb, Cu, Fe and Al were performed on 53 wet atmospheric precipitation samples (snow and rainwater) collected at a central site of Tehran. Samples were collected using a bulk sampler equipped with a high-density polyethylene funnel from November to May in 2011 and 2012 on the roof of a building in the city centre. Trace metals in the filtered samples were measured with ICP-MS. Statistical analysis of the results revealed that Al, which is principally a crustal-derived element, was the highest mean measured concentration. The pH ranged from 4.2 to 7.1 with a mean value of 5.1. Crustal enrichment factors (EFc) related to the relative abundance of elements in crustal material was calculated using Al as reference crustal. EFc calculations indicated that samples were not enriched with Fe and Cr but were, fairly to extremely, enriched with Zn, Cd, Ni, Pb and Cu. Factor component analysis with varimax-normalized rotation was conducted to find the probable sources of the measured species. This resulted in two factors with eigenvalues greater than unity. Factor 1 showed an anthropogenic source, mostly industrial combustion and local traffic emissions, for Zn, Cd, Ni, Pb, and Cu while factor 2 showed a crustal contribution for Al, Fe and Cr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号