首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   1篇
  国内免费   13篇
安全科学   11篇
废物处理   25篇
环保管理   20篇
综合类   18篇
基础理论   37篇
污染及防治   52篇
评价与监测   31篇
社会与环境   13篇
灾害及防治   1篇
  2023年   4篇
  2022年   23篇
  2021年   15篇
  2020年   7篇
  2019年   9篇
  2018年   15篇
  2017年   10篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   28篇
  2012年   18篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2005年   6篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1976年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
21.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   
22.
Future air pollution emissions in the year 2030 were estimated for the San Joaquin Valley (SJV) in central California using a combined system of land use, mobile, off-road, stationary, area, and biogenic emissions models. Four scenarios were developed that use different assumptions about the density of development and level of investment in transportation infrastructure to accommodate the expected doubling of the SJV population in the next 20 years. Scenario 1 reflects current land-use patterns and infrastructure while scenario 2 encouraged compact urban footprints including redevelopment of existing urban centers and investments in transit. Scenario 3 allowed sprawling development in the SJV with reduced population density in existing urban centers and construction of all planned freeways. Scenario 4 followed currently adopted land use and transportation plans for the SJV. The air quality resulting from these urban development scenarios was evaluated using meteorology from a winter stagnation event that occurred on December 15th, 2000 to January 7th 2001. Predicted base-case PM2.5 mass concentrations within the region exceeded 35 μg m?3 over the 22-day episode. Compact growth reduced the PM2.5 concentrations by ~1 μg m?3 relative to the base-case over most of the SJV with the exception of increases (~1 μg m?3) in urban centers driven by increased concentrations of elemental carbon (EC) and organic carbon (OC). Low-density development increased the PM2.5 concentrations by 1–4 μg m?3 over most of the region, with decreases (0.5–2 μg m?3) around urban areas. Population-weighted average PM2.5 concentrations were very similar for all development scenarios ranging between 16 and 17.4 μg m?3. Exposure to primary PM components such as EC and OC increased 10–15% for high density development scenarios and decreased by 11–19% for low-density scenarios. Patterns for secondary PM components such as nitrate and ammonium ion were almost exactly reversed, with a 10% increase under low-density development and a 5% decrease under high density development. The increased human exposure to primary pollutants such as EC and OC could be predicted using a simplified analysis of population-weighted primary emissions. Regional planning agencies should develop thresholds of population-weighted primary emissions exposure to guide the development of growth plans. This metric will allow them to actively reduce the potential negative impacts of compact growth while preserving the benefits.  相似文献   
23.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   
24.
Methods previously published by this laboratory for analyzing thin dust coatings of airborne particulates have been further evaluated, as applied to vast air pollution surveys. It was demonstrated that choice of glass fiber filters adapted to high-volume samplers restricts the analysis to a limited number of elements, such as lead. More flexibility and versatility are attained through the use of organic membrane filters mounted in small plastic monitors which permit multi-elemental analysis at least as accurately as with other popular but time-consuming techniques. These qualities of speed and accuracy allow shorter intervals of sampling which are normally required for better statistical assessment of broad air pollution surveys. Sensitivity of the technique reaches a value close to 0.05 μg/m3, while time of analysis required is about five minutes per element after receipt of the sample.  相似文献   
25.
Decomposition of plant litter is a fundamental process in ecosystem function, carbon and nutrient cycling and, by extension, climate change. This study aimed to investigate the role of temperature on the decomposition of water soluble phenolics(WSP), carbon and soil nutrients in conjunction with the phytotoxicity dynamics of Chrysanthemoides monilifera subsp. monilifera(boneseed) litter. Treatments consisted of three factors including decomposition materials(litter alone, litter with soil and soil alone), decomposition periods and temperatures(5–15, 15–25and 25–35°C(night/day)). Leachates were collected on 0, 5, 10, 20, 40 and 60 th days to analyse physico-chemical parameters and phytotoxicity. Water soluble phenolics and dissolved organic carbon(DOC) increased with increasing temperature while nutrients like SO-24 and NO-13 decreased. Speed of germination, hypocotyl and radical length and weight of Lactuca sativa exposed to leachates were decreased with increasing decomposition temperature. All treatment components had significant effects on these parameters. There had a strong correlation between DOC and WSP, and WSP content of the leachates with radical length of test species. This study identified complex interactivity among temperature, WSP, DOC and soil nutrient dynamics of litter occupied soil and that these factors work together to influence phytotoxicity.  相似文献   
26.
27.
Environment, Development and Sustainability - This paper uncovers the link between economic development and environmental degradation in Turkey by employing two distinct methods. We test the...  相似文献   
28.
Environmental Science and Pollution Research - The interaction and the interplay of climate change with oil palm production in the Southeast Asia region are of serious concern. This particularly...  相似文献   
29.
Journal of Polymers and the Environment - In the present investigation, the influence of coir micro-particles and titanium carbide (TiC) nanofillers on mechanical characteristics and thermal...  相似文献   
30.
Defining better methodologies of accurate predictions of the amount of monthly mean daily global and diffuse solar irradiation exposed is of utmost importance in order to determine the potential for utilizing the solar energy. This study compares and discusses the main methodologies, databases, and software that are used in estimating the solar irradiation to be used for the short- and long-term performances and feasibilities of solar energy systems, especially photovoltaic power plants in Turkey, and addresses the best one to be used to make the most accurate estimations. The comparisons are carried out between the recent methodologies developed by the authors, some models taken from the related literature that are concluded to be better, a widely used database, namely Meteonorm, and a widely used software, namely EU PVGIS. The reference data to develop the methodologies and to make comparison are provided from the State Meteorological Service of Turkey, which is the responsible body in Turkey to make measurements of solar irradiation. The comparisons are based on monthly mean daily values of global and diffuse solar irradiation and are carried out by statistical errors: mean bias error and root mean square error. The results showed that the methodology developed by the authors has shown better performances in estimating the monthly mean daily global and diffuse solar irradiation amount for Turkey.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号